The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The goal of r6qualitytools is to provide a comprehensive suite of statistical tools for Quality Management, designed around the Define, Measure, Analyze, Improve, and Control (DMAIC) cycle used in Six Sigma methodology. It builds on the original discontinued CRAN package qualitytools, enhancing it with R6 object-oriented programming, modernizing the graphics with ggplot2 and plotly, and adopting tidyverse principles for data manipulation and visualization.
install.packages("r6qualitytools")
library("r6qualitytools")
r6qualitytools includes various tools to manage quality science processes efficiently:
It supports a variety of analyses relevant to quality management, offering an intuitive interface for both beginners and advanced users.
For more details, see the package documentation.
You can use the package to generate statistical models and control charts efficiently. Here are basic examples that demonstrates the use of the package:
library(r6qualitytools)
# Object of Class Distr - Normal
set.seed(123)
<- rnorm(100, mean = 5, sd = 2)
data <- list(mean = 5, sd = 2)
parameters <- Distr$new(x = data, name = "normal", parameters = parameters, sd = 2, n = 100, loglik = -120)
distr $plot() distr
# Class DistrCollection
<- rpois(100, lambda = 3)
data2 <- list(lambda = 3)
parameters2 <- Distr$new(x = data2, name = "poisson", parameters = parameters2, sd = sqrt(3), n = 100, loglik = -150)
distr2 $plot() distr2
<- DistrCollection$new()
collection $add(distr)
collection$add(distr2)
collection$summary()
collection#>
#> ------ Fitted Distribution and estimated parameters ------
#>
#> fitted distribution is normal :
#> $mean
#> [1] 5
#>
#> $sd
#> [1] 2
#>
#>
#> fitted distribution is poisson :
#> $lambda
#> [1] 3
#>
#>
#>
#> ------ Goodness of Fit - Anderson Darling Test ------
#>
#> Distribution A p.value
#> 1 normal 0.182 0.9104
#> 2 poisson 5.733 NA
# qqPlot and ppPlot
set.seed(1234)
<- rnorm(20, mean = 20)
x qqPlot(x, "normal", bounds.lty = 3, bounds.col = "red")
ppPlot(x, "normal", bounds.lty = 3, bounds.col = "red")
# Gage capacity
<- c( 9.991, 10.013, 10.001, 10.007, 10.010, 10.013, 10.008, 10.017, 10.005, 10.005, 10.002,
x 10.017, 10.005, 10.002, 9.996, 10.011, 10.009 , 10.006, 10.008, 10.003, 10.002, 10.006,
10.010, 9.992, 10.013)
cg(x, target = 10.003, tolerance = c(9.903, 10.103))
# Process Capability
set.seed(1234)
<- rnorm(20, mean = 20)
data pcr(data, "normal", lsl = 17, usl = 23)
#> Scale for x is already present.
#> Adding another scale for x, which will replace the existing scale.
#>
#> Anderson Darling Test for normal distribution
#>
#> data: data
#> A = 0.5722, mean = 19.749, sd = 1.014, p-value = 0.1191
#> alternative hypothesis: true distribution is not equal to normal
# Gage R&R Design
<- gageRRDesign(Operators = 3, Parts = 10, Measurements = 3, randomize = FALSE, method='nested')
gdo # vector of responses
<- c(0.29,0.08, 0.04,-0.56,-0.47,-1.38,1.34,1.19,0.88,0.47,0.01,0.14,-0.80,
y -0.56,-1.46, 0.02,-0.20,-0.29,0.59,0.47,0.02,-0.31,-0.63,-0.46,2.26,
1.80,1.77,-1.36,-1.68,-1.49,0.41,0.25,-0.11,-0.68,-1.22,-1.13,1.17,0.94,
1.09,0.50,1.03,0.20,-0.92,-1.20,-1.07,-0.11, 0.22,-0.67,0.75,0.55,0.01,
-0.20, 0.08,-0.56,1.99,2.12,1.45,-1.25,-1.62,-1.77,0.64,0.07,-0.15,-0.58,
-0.68,-0.96,1.27,1.34,0.67,0.64,0.20,0.11,-0.84,-1.28,-1.45,-0.21,0.06,
-0.49,0.66,0.83,0.21,-0.17,-0.34,-0.49,2.01,2.19,1.87,-1.31,-1.50,-2.16)
$response(y)
gdo
<- gageRR(gdo, method='nested')
gdo #>
#> AnOVa Table - nested Design
#> Df Sum Sq Mean Sq F value Pr(>F)
#> Operator 2 0.01 0.003 0.029 0.972
#> Operator:Part 27 89.03 3.298 35.283 <2e-16 ***
#> Residuals 60 5.61 0.093
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> ----------
#>
#> Gage R&R
#> VarComp VarCompContrib Stdev StudyVar StudyVarContrib
#> totalRR 0.0935 0.0805 0.306 1.83 0.284
#> repeatability 0.0935 0.0805 0.306 1.83 0.284
#> reproducibility 0.0000 0.0000 0.000 0.00 0.000
#> Part to Part 1.0680 0.9195 1.033 6.20 0.959
#> totalVar 1.1615 1.0000 1.078 6.47 1.000
#>
#> ---
#> * Contrib equals Contribution in %
#> **Number of Distinct Categories (truncated signal-to-noise-ratio) = 4
# Using Plots
$errorPlot() gdo
$whiskersPlot() gdo
$averagePlot() gdo
$compPlot() gdo
# Factorial Designs
<- facDesign(k = 3)
vp.full = rnorm(2^3)
y $.response(y)
vp.full$summary()
vp.full#> Information about the factors:
#>
#> A B C
#> low -1 -1 -1
#> high 1 1 1
#> name A B C
#> unit
#> type numeric numeric numeric
#> -----------
#> StandOrder RunOrder Block A B C y
#> 7 7 1 1 -1 1 1 0.03572991
#> 2 2 2 1 1 -1 -1 0.11297506
#> 6 6 3 1 1 -1 1 1.42855203
#> 1 1 4 1 -1 -1 -1 0.98340378
#> 4 4 5 1 1 1 -1 -0.62245679
#> 3 3 6 1 -1 1 -1 -0.73153600
#> 8 8 7 1 1 1 1 -0.51666972
#> 5 5 8 1 -1 -1 1 -1.75073344
$effectPlot() vp.full
# Plots
paretoPlot(vp.full, p.col = "Pastel1")
#> Scale for y is already present.
#> Adding another scale for y, which will replace the existing scale.
normalPlot(vp.full)
<- wirePlot(A,B,y, data = vp.full)
wire1 $plot wire1
<- contourPlot(A,B,y, data = vp.full)
contour1 $plot contour1
# Mix Design
<- mixDesign(3, 2, center = FALSE, axial = FALSE, randomize = FALSE, replicates = c(1, 1, 2, 3))
mdo
$names(c("polyethylene", "polystyrene", "polypropylene"))
mdo<- c(11.0, 12.4, 15.0, 14.8, 16.1, 17.7, 16.4, 16.6, 8.8, 10.0, 10.0, 9.7, 11.8, 16.8, 16.0)
elongation $.response(elongation)
mdo$summary()
mdo#> Simplex LATTICE Design
#> Information about the factors:
#>
#> polyethylene polystyrene polypropylene
#> low 0 0 0
#> high 1 1 1
#> name polyethylene polystyrene polypropylene
#> unit % % %
#> type numeric numeric numeric
#>
#> -----------
#>
#> Information about the Design Points:
#>
#> 1-blend 2-blend
#> Unique 3 3
#> Replicates 2 3
#> Sub Total 6 9
#> Total 15
#>
#> -----------
#>
#> Information about the constraints:
#>
#> A >= 0 B >= 0 C >= 0
#>
#> -----------
#>
#> PseudoComponent _|_ Proportion _|_ Amount
#>
#> StandOrder RunOrder Type | A B C _ | _ A B C _ | _ A B
#> 1 1 1 1-blend | 1.0 0.0 0.0 | 1.0 0.0 0.0 | 1.0 0.0
#> 2 2 2 1-blend | 1.0 0.0 0.0 | 1.0 0.0 0.0 | 1.0 0.0
#> 3 3 3 2-blend | 0.5 0.5 0.0 | 0.5 0.5 0.0 | 0.5 0.5
#> 4 4 4 2-blend | 0.5 0.5 0.0 | 0.5 0.5 0.0 | 0.5 0.5
#> 5 5 5 2-blend | 0.5 0.5 0.0 | 0.5 0.5 0.0 | 0.5 0.5
#> 6 6 6 2-blend | 0.5 0.0 0.5 | 0.5 0.0 0.5 | 0.5 0.0
#> 7 7 7 2-blend | 0.5 0.0 0.5 | 0.5 0.0 0.5 | 0.5 0.0
#> 8 8 8 2-blend | 0.5 0.0 0.5 | 0.5 0.0 0.5 | 0.5 0.0
#> 9 9 9 1-blend | 0.0 1.0 0.0 | 0.0 1.0 0.0 | 0.0 1.0
#> 10 10 10 1-blend | 0.0 1.0 0.0 | 0.0 1.0 0.0 | 0.0 1.0
#> 11 11 11 2-blend | 0.0 0.5 0.5 | 0.0 0.5 0.5 | 0.0 0.5
#> 12 12 12 2-blend | 0.0 0.5 0.5 | 0.0 0.5 0.5 | 0.0 0.5
#> 13 13 13 2-blend | 0.0 0.5 0.5 | 0.0 0.5 0.5 | 0.0 0.5
#> 14 14 14 1-blend | 0.0 0.0 1.0 | 0.0 0.0 1.0 | 0.0 0.0
#> 15 15 15 1-blend | 0.0 0.0 1.0 | 0.0 0.0 1.0 | 0.0 0.0
#> C | elongation
#> 1 0.0 | 11.0
#> 2 0.0 | 12.4
#> 3 0.0 | 15.0
#> 4 0.0 | 14.8
#> 5 0.0 | 16.1
#> 6 0.5 | 17.7
#> 7 0.5 | 16.4
#> 8 0.5 | 16.6
#> 9 0.0 | 8.8
#> 10 0.0 | 10.0
#> 11 0.5 | 10.0
#> 12 0.5 | 9.7
#> 13 0.5 | 11.8
#> 14 1.0 | 16.8
#> 15 1.0 | 16.0
#>
#> -----------
#>
#> Mixture Total: 1 equals 1
<- contourPlot3(A, B, C, elongation, data = mdo, form = "quadratic")
contour3 $plot contour3
<- wirePlot3(A, B, C, elongation, data = mdo, form = "quadratic")
wire3 $plot wire3
# Taguchi Design
<- taguchiDesign("L9_3",randomize=F)
tdo $values(list(A = c("material 1", "material 2", "material 3"), B = c(29, 30, 35)))
tdo$names(c("Factor 1", "Factor 2", "Factor 3", "Factor 4"))
tdoset.seed(1)
$.response(rnorm(9))
tdo$summary()
tdo#> Taguchi SINGLE Design
#> Information about the factors:
#>
#> A B C D
#> value 1 material 1 29 1 1
#> value 2 material 2 30 2 2
#> value 3 material 3 35 3 3
#> name Factor 1 Factor 2 Factor 3 Factor 4
#> unit
#> type numeric numeric numeric numeric
#>
#> -----------
#>
#> StandOrder RunOrder Replicate A B C D rnorm(9)
#> 1 1 1 1 1 1 1 1 -0.6264538
#> 2 2 2 1 1 2 2 2 0.1836433
#> 3 3 3 1 1 3 3 3 -0.8356286
#> 4 4 4 1 2 1 2 3 1.5952808
#> 5 5 5 1 2 2 3 1 0.3295078
#> 6 6 6 1 2 3 1 2 -0.8204684
#> 7 7 7 1 3 1 3 2 0.4874291
#> 8 8 8 1 3 2 1 3 0.7383247
#> 9 9 9 1 3 3 2 1 0.5757814
#>
#> -----------
$effectPlot() tdo
# Plackett-Burman Design
<- pbDesign(26)
pbdo$summary()
pbdo#> Plackett-Burman Design
#> Information about the factors:
#>
#> A B C D E F G H J
#> value 1 -1 -1 -1 -1 -1 -1 -1 -1 -1
#> value 2 1 1 1 1 1 1 1 1 1
#> name
#> unit
#> type numeric numeric numeric numeric numeric numeric numeric numeric numeric
#> K L M N O P Q R S
#> value 1 -1 -1 -1 -1 -1 -1 -1 -1 -1
#> value 2 1 1 1 1 1 1 1 1 1
#> name
#> unit
#> type numeric numeric numeric numeric numeric numeric numeric numeric numeric
#> T U V W X Y Z
#> value 1 -1 -1 -1 -1 -1 -1 -1
#> value 2 1 1 1 1 1 1 1
#> name
#> unit
#> type numeric numeric numeric numeric numeric numeric numeric
#>
#> -----------
#>
#> StandOrder RunOrder Replicate A B C D E F G H J K L M N O P
#> 1 16 1 1 1 -1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 1
#> 2 11 2 1 -1 -1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 1
#> 3 18 3 1 1 1 1 -1 1 1 -1 -1 -1 1 1 1 1 1 -1
#> 4 17 4 1 1 1 -1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1
#> 5 6 5 1 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 1 -1 1 1
#> 6 19 6 1 -1 1 1 1 -1 1 1 -1 -1 -1 1 1 1 1 1
#> 7 2 7 1 1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 -1 1 1
#> 8 24 8 1 -1 -1 1 -1 1 -1 1 1 1 -1 1 1 -1 -1 -1
#> 9 3 9 1 -1 1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 -1 1
#> 10 1 10 1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 -1 1 1 -1
#> 11 26 11 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
#> 12 15 12 1 -1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 1 -1
#> 13 25 13 1 -1 -1 -1 1 -1 1 -1 1 1 1 -1 1 1 -1 -1
#> 14 8 14 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 1 -1
#> 15 4 15 1 -1 -1 1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 -1
#> 16 20 16 1 1 -1 1 1 1 -1 1 1 -1 -1 -1 1 1 1 1
#> 17 23 17 1 -1 1 -1 1 -1 1 1 1 -1 1 1 -1 -1 -1 1
#> 18 10 18 1 -1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 1 -1
#> 19 13 19 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 1 -1 -1 -1
#> 20 14 20 1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 1 -1 -1
#> 21 5 21 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 1 -1 1 1 1
#> 22 9 22 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 1
#> 23 22 23 1 1 -1 1 -1 1 1 1 -1 1 1 -1 -1 -1 1 1
#> 24 7 24 1 1 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 1 -1 1
#> 25 21 25 1 -1 1 -1 1 1 1 -1 1 1 -1 -1 -1 1 1 1
#> 26 12 26 1 -1 -1 -1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1
#> Q R S T U V W X Y Z y
#> 1 -1 -1 -1 -1 1 -1 1 -1 1 1 NA
#> 2 -1 1 -1 1 1 1 -1 1 1 -1 NA
#> 3 -1 1 -1 -1 -1 -1 1 -1 1 -1 NA
#> 4 1 -1 -1 -1 -1 1 -1 1 -1 1 NA
#> 5 1 -1 1 1 -1 -1 -1 1 1 1 NA
#> 6 -1 -1 1 -1 -1 -1 -1 1 -1 1 NA
#> 7 -1 -1 -1 1 1 1 1 1 -1 -1 NA
#> 8 1 1 1 1 1 -1 -1 1 -1 -1 NA
#> 9 1 -1 -1 -1 1 1 1 1 1 -1 NA
#> 10 -1 -1 1 1 1 1 1 -1 -1 1 NA
#> 11 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 NA
#> 12 -1 -1 -1 1 -1 1 -1 1 1 1 NA
#> 13 -1 1 1 1 1 1 -1 -1 1 -1 NA
#> 14 1 1 1 -1 1 1 -1 -1 -1 1 NA
#> 15 1 1 -1 -1 -1 1 1 1 1 1 NA
#> 16 1 -1 -1 1 -1 -1 -1 -1 1 -1 NA
#> 17 1 1 1 1 -1 -1 1 -1 -1 -1 NA
#> 18 1 -1 1 1 1 -1 1 1 -1 -1 NA
#> 19 -1 1 -1 1 -1 1 1 1 -1 1 NA
#> 20 -1 -1 1 -1 1 -1 1 1 1 -1 NA
#> 21 -1 1 1 -1 -1 -1 1 1 1 1 NA
#> 22 -1 1 1 1 -1 1 1 -1 -1 -1 NA
#> 23 1 1 1 -1 -1 1 -1 -1 -1 -1 NA
#> 24 1 1 -1 1 1 -1 -1 -1 1 1 NA
#> 25 1 1 -1 -1 1 -1 -1 -1 -1 1 NA
#> 26 1 -1 1 -1 1 1 1 -1 1 1 NA
#>
#> -----------
# gageLin Design
=c(2.7,2.5,2.4,2.5,2.7,2.3,2.5,2.5,2.4,2.4,2.6,2.4)
A=c(5.1,3.9,4.2,5,3.8,3.9,3.9,3.9,3.9,4,4.1,3.8)
B=c(5.8,5.7,5.9,5.9,6,6.1,6,6.1,6.4,6.3,6,6.1)
C=c(7.6,7.7,7.8,7.7,7.8,7.8,7.8,7.7,7.8,7.5,7.6,7.7)
D=c(9.1,9.3,9.5,9.3,9.4,9.5,9.5,9.5,9.6,9.2,9.3,9.4)
E
=gageLinDesign(ref=c(2,4,6,8,10),n=12)
test=data.frame(rbind(A,B,C,D,E))
Messungen$response(Messungen)
test$summary()
test#> ----------------------
#> Part Ref X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
#> A 1 2 2.7 2.5 2.4 2.5 2.7 2.3 2.5 2.5 2.4 2.4 2.6 2.4
#> B 2 4 5.1 3.9 4.2 5.0 3.8 3.9 3.9 3.9 3.9 4.0 4.1 3.8
#> C 3 6 5.8 5.7 5.9 5.9 6.0 6.1 6.0 6.1 6.4 6.3 6.0 6.1
#> D 4 8 7.6 7.7 7.8 7.7 7.8 7.8 7.8 7.7 7.8 7.5 7.6 7.7
#> E 5 10 9.1 9.3 9.5 9.3 9.4 9.5 9.5 9.5 9.6 9.2 9.3 9.4
#> ----------------------
=gageLin(test,lty=c(3,4), plot = FALSE)
MSALin#> ----------------------
#> BIAS:
#> X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
#> A 0.7 0.5 0.4 0.5 0.7 0.3 0.5 0.5 0.4 0.4 0.6 0.4
#> B 1.1 -0.1 0.2 1.0 -0.2 -0.1 -0.1 -0.1 -0.1 0.0 0.1 -0.2
#> C -0.2 -0.3 -0.1 -0.1 0.0 0.1 0.0 0.1 0.4 0.3 0.0 0.1
#> D -0.4 -0.3 -0.2 -0.3 -0.2 -0.2 -0.2 -0.3 -0.2 -0.5 -0.4 -0.3
#> E -0.9 -0.7 -0.5 -0.7 -0.6 -0.5 -0.5 -0.5 -0.4 -0.8 -0.7 -0.6
#> ----------------------
#> MEAN OF BIAS:
#> A B C D E
#> 0.4916667 0.1250000 0.0250000 -0.2916667 -0.6166667
#> ----------------------
#> LINEAR MODEL:
#>
#> Call:
#> lm(formula = BIAS ~ ref)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.41000 -0.12000 0.01667 0.11667 0.89000
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.73667 0.07252 10.16 1.73e-14 ***
#> ref -0.13167 0.01093 -12.04 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.2395 on 58 degrees of freedom
#> Multiple R-squared: 0.7143, Adjusted R-squared: 0.7094
#> F-statistic: 145 on 1 and 58 DF, p-value: < 2.2e-16
#>
#> ----------------------
#> LINEARITY:
#> 13.16667
$plot() MSALin
If you encounter any issues or have questions, please file an issue with a reproducible example at the GitHub repo.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.