The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

qwraps2: Summary Table

Peter E. DeWitt

set.seed(42)
library(qwraps2)
options(qwraps2_markup = "markdown")

The summary_table method appears to be the most popular and widely used feature of the qwraps2 package. As such, this vignette is provided to give as much detail on the use of the method, and the underlying qable method for quickly building well formatted summary tables.

1 qable

qable builds a formatted character matrix from inputs and then renders a table via knitr::kable. The primary objective of this function is to allow for easy construction of row groups.

1.1 kable vs qable

For a simple example we will use the following data set with a grouping variable, subject id, and two variables, V2, and V3. For simplicity, we will order the data by group and id as well.

d <- data.frame(
       group = sample(size = 15, paste0("grp", 1:5), replace = TRUE)
     , id = sample(size = 15, x = LETTERS)
     , V2 = rnorm(15)
     , V3 = rep(c(1, 2, NA), times = 5)
     )
d <- d[order(d$group, d$id), ]

Making a simple table via kable:

knitr::kable(d, row.names = FALSE)
group id V2 V3
grp1 D 0.3584021 1
grp1 H -0.9491808 NA
grp1 I 1.7232308 NA
grp1 J 2.1157556 2
grp1 O -0.1616986 1
grp2 B 0.6707038 2
grp2 E 0.3024309 2
grp2 K -0.7045514 NA
grp2 R 0.9469132 2
grp2 V 0.7881406 1
grp4 M -0.3941145 NA
grp4 P -0.8798365 1
grp4 Y 0.0361357 1
grp5 A 0.1674409 NA
grp5 C 1.9355718 2

The group column is great for data analysis, but is not the best for human readability. This is where qable can be useful. Start by building a named numeric column with the name being the row group name and the value the number of rows. For the ordered data this is a simple call to table:

c(table(d$group))
## grp1 grp2 grp4 grp5 
##    5    5    3    2

If we pass that named vector to qable as the rgroup and with specify the id column as the row names we have the same information but in format that is better for humans:

qable(  x = d[, c("V2", "V3")]
      , rgroup = c(table(d$group)) # row group
      , rnames = d$id              # row names
)
V2 V3
grp1      
   D 0.358402056802064 1
   H -0.949180809687611 NA
   I 1.72323079854894 NA
   J 2.11575561323695 2
   O -0.161698647607024 1
grp2      
   B 0.67070382675052 2
   E 0.3024309248682 2
   K -0.704551365955043 NA
   R 0.946913174943256 2
   V 0.788140622823556 1
grp4      
   M -0.394114506412192 NA
   P -0.879836528531105 1
   Y 0.0361357384849679 1
grp5      
   A 0.167440904355584 NA
   C 1.93557176599585 2

The return object from qable is a character matrix. Also, when a data.frame is passed to qable it is coerced to a matrix before anything else, as such, any formatting of numeric values or other strings should be done before calling qable.

To pass arguments to knitr::kable do so via the kable_args argument.

1.2 Example: Regression Model Summary Table

We will build a summary table for a regression model with row groups for conceptually similar predictors.

model <-
  glm(spam ~
        word_freq_your + word_freq_conference + word_freq_business +
        char_freq_semicolon + char_freq_exclamation_point +
        capital_run_length_total + capital_run_length_longest
    , data = spambase
    , family = binomial()
  )
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

model_summary <-
  data.frame(
    parameter = names(coef(model))
  , odd_ratio = frmt(exp(coef(model)), digits = 3)
  , lcl       = frmt(exp(coef(model) + qnorm(0.025) * sqrt(diag(vcov(model)))), digits = 3)
  , ucl       = frmt(exp(coef(model) + qnorm(0.975) * sqrt(diag(vcov(model)))), digits = 3)
  , pval      = frmtp(summary(model)$coef[, 4])
  )

qable(model_summary[-1, c('odd_ratio', 'lcl', 'ucl', 'pval')]
      , rtitle = "Parameter"
      , rgroup = c("Word Frequency" = 3, "Character Frequency" = 2, "Capital Run Length" = 2)
      , rnames = c("Your", "Conference", "Business", ";", "!", "Total", "Longest")
      , kable_args = list(align = "lrrrr", caption = "Regression Model Summary")
      , cnames = c("Odds Ratio", "Lower Conf. Limit", "Upper Conf. Limit", "P-value")
      )
Regression Model Summary
Parameter Odds Ratio Lower Conf. Limit Upper Conf. Limit P-value
Word Frequency            
   Your 1.802 1.678 1.934 P < 0.0001
   Conference 0.001 0.000 0.012 P < 0.0001
   Business 3.573 2.721 4.693 P < 0.0001
Character Frequency            
   ; 0.325 0.136 0.779 P = 0.0117
   ! 4.148 3.336 5.158 P < 0.0001
Capital Run Length            
   Total 1.000 1.000 1.001 P < 0.0001
   Longest 1.017 1.014 1.019 P < 0.0001

2 summary_table

summary_table was developed with the primary objective to build well formatted and easy to read data summary tables. Conceptually, the construction of these tables start by building a “list-of-lists” of summaries and then generating these summaries for specific groupings of the data set.

2.1 Defining a Summary

We will use the mtcars2 data set for these examples. We’ll start with something very simple and build up to something bigger.

Let’s report the min, max, and mean (sd) for continuous variables and n (%) for categorical variables. We will report mpg, displacement (disp), wt (weight), and gear overall and by number of cylinders and transmission type.

The use of the summary_table use to define a summary, that is, a list-of-lists of formulas for summarizing the data.frame.

The inner lists are named formulae defining the wanted summary. The names are important, as they are used to label row groups and row names in the table.

our_summary1 <-
  list("Miles Per Gallon" =
       list("min"       = ~ min(mpg),
            "max"       = ~ max(mpg),
            "mean (sd)" = ~ qwraps2::mean_sd(mpg)),
       "Displacement" =
       list("min"       = ~ min(disp),
            "median"    = ~ median(disp),
            "max"       = ~ max(disp),
            "mean (sd)" = ~ qwraps2::mean_sd(disp)),
       "Weight (1000 lbs)" =
       list("min"       = ~ min(wt),
            "max"       = ~ max(wt),
            "mean (sd)" = ~ qwraps2::mean_sd(wt)),
       "Forward Gears" =
       list("Three" = ~ qwraps2::n_perc0(gear == 3),
            "Four"  = ~ qwraps2::n_perc0(gear == 4),
            "Five"  = ~ qwraps2::n_perc0(gear == 5))
       )

Building the table is done with a call to summary_table and rendered in Table @ref(tab:mtcars_whole).

whole <-
  summary_table(
    x = mtcars2
  , summaries = our_summary1
  , qable_args = list(kable_args = list(caption = "mtcars2 data summary"))
  )
whole
mtcars2 data summary
mtcars2 (N = 32)
Miles Per Gallon   
   min 10.4
   max 33.9
   mean (sd) 20.09 ± 6.03
Displacement   
   min 71.1
   median 196.3
   max 472
   mean (sd) 230.72 ± 123.94
Weight (1000 lbs)   
   min 1.513
   max 5.424
   mean (sd) 3.22 ± 0.98
Forward Gears   
   Three 15 (47)
   Four 12 (38)
   Five 5 (16)

2.2 Summarize by

Use the by argument to specify a grouping variable and generate the same summary as above but for subsets of the data. When the by column is a factor, the columns will be in the order of the levels of the factor. In comparison, the column order is alphabetical if the variable is just a character.

by_cylf <-
  summary_table(
    x = mtcars2
  , summaries = our_summary1
  , by = c("cyl_factor")
  , qable_args = list(rtitle = "Summary Statistics"
                      , kable_args = list(caption = "mtcars2 data summary by cyl_factor"))
  )
by_cylf
mtcars2 data summary by cyl_factor
Summary Statistics 6 cylinders (N = 7) 4 cylinders (N = 11) 8 cylinders (N = 14)
Miles Per Gallon         
   min 17.8 21.4 10.4
   max 21.4 33.9 19.2
   mean (sd) 19.74 ± 1.45 26.66 ± 4.51 15.10 ± 2.56
Displacement         
   min 145 71.1 275.8
   median 167.6 108 350.5
   max 258 146.7 472
   mean (sd) 183.31 ± 41.56 105.14 ± 26.87 353.10 ± 67.77
Weight (1000 lbs)         
   min 2.62 1.513 3.17
   max 3.46 3.19 5.424
   mean (sd) 3.12 ± 0.36 2.29 ± 0.57 4.00 ± 0.76
Forward Gears         
   Three 2 (29) 1 (9) 12 (86)
   Four 4 (57) 8 (73) 0 (0)
   Five 1 (14) 2 (18) 2 (14)
by_cylc <-
  summary_table(
    x = mtcars2
  , summaries = our_summary1
  , by = c("cyl_character")
  , qable_args = list(rtitle = "Summary Statistics"
                      , kable_args = list(caption = "mtcars2 data summary by cyl_character"))
  )
by_cylc
mtcars2 data summary by cyl_character
Summary Statistics 4 cylinders (N = 11) 6 cylinders (N = 7) 8 cylinders (N = 14)
Miles Per Gallon         
   min 21.4 17.8 10.4
   max 33.9 21.4 19.2
   mean (sd) 26.66 ± 4.51 19.74 ± 1.45 15.10 ± 2.56
Displacement         
   min 71.1 145 275.8
   median 108 167.6 350.5
   max 146.7 258 472
   mean (sd) 105.14 ± 26.87 183.31 ± 41.56 353.10 ± 67.77
Weight (1000 lbs)         
   min 1.513 2.62 3.17
   max 3.19 3.46 5.424
   mean (sd) 2.29 ± 0.57 3.12 ± 0.36 4.00 ± 0.76
Forward Gears         
   Three 1 (9) 2 (29) 12 (86)
   Four 8 (73) 4 (57) 0 (0)
   Five 2 (18) 1 (14) 2 (14)

You are also able to generate summaries by multiple columns. For example, Table @ref(tab:mtcars2_by_cyl_transmission) reports the summary by the combination of the number of cylinders and the type of transmission.

by_cyl_am <-
  summary_table(
    x = mtcars2
  , summaries = our_summary1
  , by = c("cyl_factor", "transmission")
  )
by_cyl_am
6 cylinders.Automatic (N = 4) 4 cylinders.Automatic (N = 3) 8 cylinders.Automatic (N = 12) 6 cylinders.Manual (N = 3) 4 cylinders.Manual (N = 8) 8 cylinders.Manual (N = 2)
Miles Per Gallon                  
   min 17.8 21.5 10.4 19.7 21.4 15
   max 21.4 24.4 19.2 21 33.9 15.8
   mean (sd) 19.12 ± 1.63 22.90 ± 1.45 15.05 ± 2.77 20.57 ± 0.75 28.07 ± 4.48 15.40 ± 0.57
Displacement                  
   min 167.6 120.1 275.8 145 71.1 301
   median 196.3 140.8 355 160 87.05 326
   max 258 146.7 472 160 121 351
   mean (sd) 204.55 ± 44.74 135.87 ± 13.97 357.62 ± 71.82 155.00 ± 8.66 93.61 ± 20.48 326.00 ± 35.36
Weight (1000 lbs)                  
   min 3.215 2.465 3.435 2.62 1.513 3.17
   max 3.46 3.19 5.424 2.875 2.78 3.57
   mean (sd) 3.39 ± 0.12 2.94 ± 0.41 4.10 ± 0.77 2.75 ± 0.13 2.04 ± 0.41 3.37 ± 0.28
Forward Gears                  
   Three 2 (50) 1 (33) 12 (100) 0 (0) 0 (0) 0 (0)
   Four 2 (50) 2 (67) 0 (0) 2 (67) 6 (75) 0 (0)
   Five 0 (0) 0 (0) 0 (0) 1 (33) 2 (25) 2 (100)

2.3 cbind summary_table

It is common that I will want to have a summary table with the first column reporting for the whole data sets and the additional columns for subsets of the data set. The returned objects from summary_table can be joined together via cbind assuming that the row groupings (summaries) are the same.

Note: the kable_args of the first item passed to cbind will be assigned to the resulting object (Table @ref(tab:mtcars2_cbind)). However, there is an easy way to modify the qable_args and kable_args via the print method.

both <- cbind(whole, by_cylf)
both
mtcars2 data summary
mtcars2 (N = 32) 6 cylinders (N = 7) 4 cylinders (N = 11) 8 cylinders (N = 14)
Miles Per Gallon            
   min 10.4 17.8 21.4 10.4
   max 33.9 21.4 33.9 19.2
   mean (sd) 20.09 ± 6.03 19.74 ± 1.45 26.66 ± 4.51 15.10 ± 2.56
Displacement            
   min 71.1 145 71.1 275.8
   median 196.3 167.6 108 350.5
   max 472 258 146.7 472
   mean (sd) 230.72 ± 123.94 183.31 ± 41.56 105.14 ± 26.87 353.10 ± 67.77
Weight (1000 lbs)            
   min 1.513 2.62 1.513 3.17
   max 5.424 3.46 3.19 5.424
   mean (sd) 3.22 ± 0.98 3.12 ± 0.36 2.29 ± 0.57 4.00 ± 0.76
Forward Gears            
   Three 15 (47) 2 (29) 1 (9) 12 (86)
   Four 12 (38) 4 (57) 8 (73) 0 (0)
   Five 5 (16) 1 (14) 2 (18) 2 (14)

If you want to update how a summary table is printed, you can do so by calling the print method explicitly while passing a new set of qable_args, see Table @ref(tab:updated_both).


print(both,
      qable_args = list(
        rtitle = "ROW-TITLE",
        cnames = c("Col 0", "Col 1", "Col 2", "Col 3"),
        kable_args = list(
          align = "lcrcr",
          caption = "mtcars2 data summary - new caption"
        )
      ))
mtcars2 data summary - new caption
ROW-TITLE Col 0 Col 1 Col 2 Col 3
Miles Per Gallon            
   min 10.4 17.8 21.4 10.4
   max 33.9 21.4 33.9 19.2
   mean (sd) 20.09 ± 6.03 19.74 ± 1.45 26.66 ± 4.51 15.10 ± 2.56
Displacement            
   min 71.1 145 71.1 275.8
   median 196.3 167.6 108 350.5
   max 472 258 146.7 472
   mean (sd) 230.72 ± 123.94 183.31 ± 41.56 105.14 ± 26.87 353.10 ± 67.77
Weight (1000 lbs)            
   min 1.513 2.62 1.513 3.17
   max 5.424 3.46 3.19 5.424
   mean (sd) 3.22 ± 0.98 3.12 ± 0.36 2.29 ± 0.57 4.00 ± 0.76
Forward Gears            
   Three 15 (47) 2 (29) 1 (9) 12 (86)
   Four 12 (38) 4 (57) 8 (73) 0 (0)
   Five 5 (16) 1 (14) 2 (18) 2 (14)

2.4 Adding P-values to a Summary Table

There are many different ways to format data summary tables. Adding p-values to a table is just one thing that can be done in more than one way. For example, if a row group reports the counts and percentages for each level of a categorical variable across multiple (column) groups, then I would argue that the p-value resulting from a chi square test or a Fisher exact test would be best placed on the line of the table labeling the row group. However, say we reported the minimum, median, mean, and maximum with in a row group for one variable. The p-value from a t-test, or other meaningful test for the difference in mean, I would suggest should be reported on the line of the summary table for the mean, not the row group itself.

With so many possibilities I have reserved construction of a p-value column to be ad hoc. Perhaps an additional column wouldn’t be used and the p-values are edited into row group labels, for example.

If you want to add a p-value column, or any other column(s) to a qwraps2_summary_table object you can with some degree of ease. Note that qwraps2_summary_table objects are just character matrices with additional attributes.

str(both)
##  'qwraps2_summary_table' chr [1:17, 1:5] "**Miles Per Gallon**" ...
##  - attr(*, "dimnames")=List of 2
##   ..$ : NULL
##   ..$ : chr [1:5] "" "mtcars2 (N = 32)" "6 cylinders (N = 7)" "4 cylinders (N = 11)" ...
##  - attr(*, "qable_args")=List of 6
##   ..$ rtitle    : chr ""
##   ..$ rgroup    : Named int [1:4] 3 4 3 3
##   .. ..- attr(*, "names")= chr [1:4] "Miles Per Gallon" "Displacement" "Weight (1000 lbs)" "Forward Gears"
##   ..$ rnames    : chr [1:13] "min" "max" "mean (sd)" "min" ...
##   ..$ cnames    : chr [1:5] "" "mtcars2 (N = 32)" "6 cylinders (N = 7)" "4 cylinders (N = 11)" ...
##   ..$ markup    : chr "markdown"
##   ..$ kable_args:List of 1
##   .. ..$ caption: chr "mtcars2 data summary"

For this example, we will added p-values for testing the difference in the mean between the three cylinder groups and the distribution of forward gears by cylinder groups.

# difference in means
mpvals <-
  sapply(
         list(mpg  = lm(mpg  ~ cyl_factor, data = mtcars2),
              disp = lm(disp ~ cyl_factor, data = mtcars2),
              wt   = lm(wt   ~ cyl_factor, data = mtcars2)),
         extract_fpvalue)

# Fisher test
fpval <- frmtp(fisher.test(table(mtcars2$gear, mtcars2$cyl_factor))$p.value)

In this case, adding the p-value column, is done by creating a empty column and then writing in the needed p-value on the wanted rows. This could be within a row group (tests for means) or for a row group (Fisher test).

both <- cbind(both, "P-value" = "")
both[grepl("mean \\(sd\\)", both[, 1]), "P-value"] <- mpvals
both[grepl("Forward Gears", both[, 1]), "P-value"] <- fpval
print(both, qable_args = list(kable_args = list(caption = "mtcars2 summary with p-values")))
mtcars2 summary with p-values
mtcars2 (N = 32) 6 cylinders (N = 7) 4 cylinders (N = 11) 8 cylinders (N = 14) P-value
Miles Per Gallon            
   min 10.4 17.8 21.4 10.4
   max 33.9 21.4 33.9 19.2
   mean (sd) 20.09 ± 6.03 19.74 ± 1.45 26.66 ± 4.51 15.10 ± 2.56 P < 0.0001
Displacement            
   min 71.1 145 71.1 275.8
   median 196.3 167.6 108 350.5
   max 472 258 146.7 472
   mean (sd) 230.72 ± 123.94 183.31 ± 41.56 105.14 ± 26.87 353.10 ± 67.77 P < 0.0001
Weight (1000 lbs)            
   min 1.513 2.62 1.513 3.17
   max 5.424 3.46 3.19 5.424
   mean (sd) 3.22 ± 0.98 3.12 ± 0.36 2.29 ± 0.57 4.00 ± 0.76 P < 0.0001
Forward Gears             P < 0.0001
   Three 15 (47) 2 (29) 1 (9) 12 (86)
   Four 12 (38) 4 (57) 8 (73) 0 (0)
   Five 5 (16) 1 (14) 2 (18) 2 (14)

Another option you might consider is to have the p-value in the row group name. Consider the following construction. The p-values are added to the names of the row groups when building the summary table.

gear_summary <-
  list("Forward Gears" =
       list("Three" = ~ qwraps2::n_perc0(gear == 3),
            "Four"  = ~ qwraps2::n_perc0(gear == 4),
            "Five"  = ~ qwraps2::n_perc0(gear == 5)),
       "Transmission" =
       list("Automatic" = ~ qwraps2::n_perc0(am == 0),
            "Manual"    = ~ qwraps2::n_perc0(am == 1))
       )

gear_summary <-
setNames(gear_summary,
         c(
         paste("Forward Gears: ", frmtp(fisher.test(xtabs( ~ gear + cyl_factor, data = mtcars2))$p.value)),
         paste("Transmission: ",  frmtp(fisher.test(xtabs( ~ am + cyl_factor, data = mtcars2))$p.value)))
         )

summary_table(mtcars2, gear_summary, by = "cyl_factor")
6 cylinders (N = 7) 4 cylinders (N = 11) 8 cylinders (N = 14)
Forward Gears: P < 0.0001         
   Three 2 (29) 1 (9) 12 (86)
   Four 4 (57) 8 (73) 0 (0)
   Five 1 (14) 2 (18) 2 (14)
Transmission: P = 0.0091         
   Automatic 4 (57) 3 (27) 12 (86)
   Manual 3 (43) 8 (73) 2 (14)

2.5 rbind summary_table

There is a rbind method of summary tables. This can be useful when building a large a table in smaller sections would be advantageous. For example, it might be helpful to add p-values to a summary table with just one row group and then rbind all the tables together for printing. Consider that in the above example for adding p-values we have made an assumption that the order of the summary and the mpvals will be static. Remembering to make the sequence changes in more than one location can be more difficult than we would like to admit. Writing code to be robust to such changes is preferable.

t_mpg  <- summary_table(mtcars2, summaries = our_summary1["Miles Per Gallon"], by = "cyl_factor")
t_disp <- summary_table(mtcars2, summaries = our_summary1["Displacement"], by = "cyl_factor")
t_wt   <- summary_table(mtcars2, summaries = our_summary1["Weight (1000 lbs)"], by = "cyl_factor")

t_mpg  <- cbind(t_mpg,  "pvalue" = "")
t_disp <- cbind(t_disp, "pvalue" = "")
t_wt   <- cbind(t_wt,   "pvalue" = "")

t_mpg[ grepl("mean", t_mpg[, 1]),  "pvalue"] <- "mpg-pvalue"
t_disp[grepl("mean", t_disp[, 1]), "pvalue"] <- "disp-pvalue"
t_wt[  grepl("mean", t_wt[, 1]),   "pvalue"] <- "wt-pvalue"

Calling rbind now will let us have the table in different sequences without having to worry about the alignment of rows between different elements:

rbind(t_mpg, t_disp, t_wt)
## 
## 
## |                       |6 cylinders (N = 7)   |4 cylinders (N = 11)  |8 cylinders (N = 14)  |pvalue      |
## |:----------------------|:---------------------|:---------------------|:---------------------|:-----------|
## |**Miles Per Gallon**   |&nbsp;&nbsp;          |&nbsp;&nbsp;          |&nbsp;&nbsp;          |            |
## |&nbsp;&nbsp; min       |17.8                  |21.4                  |10.4                  |            |
## |&nbsp;&nbsp; max       |21.4                  |33.9                  |19.2                  |            |
## |&nbsp;&nbsp; mean (sd) |19.74 &plusmn; 1.45   |26.66 &plusmn; 4.51   |15.10 &plusmn; 2.56   |mpg-pvalue  |
## |**Displacement**       |&nbsp;&nbsp;          |&nbsp;&nbsp;          |&nbsp;&nbsp;          |            |
## |&nbsp;&nbsp; min       |145                   |71.1                  |275.8                 |            |
## |&nbsp;&nbsp; median    |167.6                 |108                   |350.5                 |            |
## |&nbsp;&nbsp; max       |258                   |146.7                 |472                   |            |
## |&nbsp;&nbsp; mean (sd) |183.31 &plusmn; 41.56 |105.14 &plusmn; 26.87 |353.10 &plusmn; 67.77 |disp-pvalue |
## |**Weight (1000 lbs)**  |&nbsp;&nbsp;          |&nbsp;&nbsp;          |&nbsp;&nbsp;          |            |
## |&nbsp;&nbsp; min       |2.62                  |1.513                 |3.17                  |            |
## |&nbsp;&nbsp; max       |3.46                  |3.19                  |5.424                 |            |
## |&nbsp;&nbsp; mean (sd) |3.12 &plusmn; 0.36    |2.29 &plusmn; 0.57    |4.00 &plusmn; 0.76    |wt-pvalue   |
rbind(t_wt, t_disp, t_mpg)
## 
## 
## |                       |6 cylinders (N = 7)   |4 cylinders (N = 11)  |8 cylinders (N = 14)  |pvalue      |
## |:----------------------|:---------------------|:---------------------|:---------------------|:-----------|
## |**Weight (1000 lbs)**  |&nbsp;&nbsp;          |&nbsp;&nbsp;          |&nbsp;&nbsp;          |            |
## |&nbsp;&nbsp; min       |2.62                  |1.513                 |3.17                  |            |
## |&nbsp;&nbsp; max       |3.46                  |3.19                  |5.424                 |            |
## |&nbsp;&nbsp; mean (sd) |3.12 &plusmn; 0.36    |2.29 &plusmn; 0.57    |4.00 &plusmn; 0.76    |wt-pvalue   |
## |**Displacement**       |&nbsp;&nbsp;          |&nbsp;&nbsp;          |&nbsp;&nbsp;          |            |
## |&nbsp;&nbsp; min       |145                   |71.1                  |275.8                 |            |
## |&nbsp;&nbsp; median    |167.6                 |108                   |350.5                 |            |
## |&nbsp;&nbsp; max       |258                   |146.7                 |472                   |            |
## |&nbsp;&nbsp; mean (sd) |183.31 &plusmn; 41.56 |105.14 &plusmn; 26.87 |353.10 &plusmn; 67.77 |disp-pvalue |
## |**Miles Per Gallon**   |&nbsp;&nbsp;          |&nbsp;&nbsp;          |&nbsp;&nbsp;          |            |
## |&nbsp;&nbsp; min       |17.8                  |21.4                  |10.4                  |            |
## |&nbsp;&nbsp; max       |21.4                  |33.9                  |19.2                  |            |
## |&nbsp;&nbsp; mean (sd) |19.74 &plusmn; 1.45   |26.66 &plusmn; 4.51   |15.10 &plusmn; 2.56   |mpg-pvalue  |

2.6 Using Variable Labels

Some data management paradigms will use attributes to keep a label associated with a variable in a data.frame. Notable examples are the Hmisc and sjPlot. If you associate a label with a variable in the data frame the that label will be used when building a summary table. This feature was suggested https://github.com/dewittpe/qwraps2/issues/74 and implemented thusly:

new_data_frame <-
  data.frame(age = c(18, 20, 24, 17, 43),
             edu = c(1, 3, 1, 5, 2),
             rt  = c(0.01, 0.04, 0.02, 0.10, 0.06))

# Set a label for the variables
attr(new_data_frame$age, "label") <- "Age in years"
attr(new_data_frame$rt,  "label") <- "Reaction time"

# mistakenly set the attribute to name instead of label
attr(new_data_frame$edu, "name") <- "Education"

When calling qsummary the provide labels for the age and rt variables will be used. Since the attribute “label” does not exist for the edu variable, edu will be used in the output.

qsummary(new_data_frame)
## $`Age in years`
## $`Age in years`$minimum
## ~qwraps2::frmt(min(age))
## 
## $`Age in years`$`median (IQR)`
## ~qwraps2::median_iqr(age)
## 
## $`Age in years`$`mean (sd)`
## ~qwraps2::mean_sd(age)
## 
## $`Age in years`$maximum
## ~qwraps2::frmt(max(age))
## 
## 
## $edu
## $edu$minimum
## ~qwraps2::frmt(min(edu))
## 
## $edu$`median (IQR)`
## ~qwraps2::median_iqr(edu)
## 
## $edu$`mean (sd)`
## ~qwraps2::mean_sd(edu)
## 
## $edu$maximum
## ~qwraps2::frmt(max(edu))
## 
## 
## $`Reaction time`
## $`Reaction time`$minimum
## ~qwraps2::frmt(min(rt))
## 
## $`Reaction time`$`median (IQR)`
## ~qwraps2::median_iqr(rt)
## 
## $`Reaction time`$`mean (sd)`
## ~qwraps2::mean_sd(rt)
## 
## $`Reaction time`$maximum
## ~qwraps2::frmt(max(rt))

This behavior is also seen with the summary_table call.

summary_table(new_data_frame)
new_data_frame (N = 5)
Age in years   
   minimum 17.00
   median (IQR) 20.00 (18.00, 24.00)
   mean (sd) 24.40 ± 10.74
   maximum 43.00
edu   
   minimum 1.00
   median (IQR) 2.00 (1.00, 3.00)
   mean (sd) 2.40 ± 1.67
   maximum 5.00
Reaction time   
   minimum 0.01
   median (IQR) 0.04 (0.02, 0.06)
   mean (sd) 0.05 ± 0.04
   maximum 0.10

2.7 Alternative building of the summaries

The task of building the summaries list-of-lists can be tedious. The function qummaries is designed to make it easier. qummaries will use a set of predefined functions to summarize numeric columns of a data.frame, a set of arguments to pass to n_perc for categorical (character and factor) variables.

By default, calling summary_table will use the default summary metrics defined by qsummary. The purpose of qsummary is to provide the same summary for all numeric variables within a data.frame and a single style of summary for categorical variables within the data.frame. For example, the default summary for a set of variables from the mtcars2 data set is

qsummary(mtcars2[, c("mpg", "cyl_factor", "wt")])
## $mpg
## $mpg$minimum
## ~qwraps2::frmt(min(mpg))
## 
## $mpg$`median (IQR)`
## ~qwraps2::median_iqr(mpg)
## 
## $mpg$`mean (sd)`
## ~qwraps2::mean_sd(mpg)
## 
## $mpg$maximum
## ~qwraps2::frmt(max(mpg))
## 
## 
## $cyl_factor
## $cyl_factor$`6 cylinders`
## ~qwraps2::n_perc(cyl_factor == "6 cylinders", digits = 0, show_symbol = FALSE)
## 
## $cyl_factor$`4 cylinders`
## ~qwraps2::n_perc(cyl_factor == "4 cylinders", digits = 0, show_symbol = FALSE)
## 
## $cyl_factor$`8 cylinders`
## ~qwraps2::n_perc(cyl_factor == "8 cylinders", digits = 0, show_symbol = FALSE)
## 
## 
## $wt
## $wt$minimum
## ~qwraps2::frmt(min(wt))
## 
## $wt$`median (IQR)`
## ~qwraps2::median_iqr(wt)
## 
## $wt$`mean (sd)`
## ~qwraps2::mean_sd(wt)
## 
## $wt$maximum
## ~qwraps2::frmt(max(wt))

That default summary is used for a table as follows:

summary_table(mtcars2[, c("mpg", "cyl_factor", "wt")])
mtcars2[, c(“mpg”, “cyl_factor”, “wt”)] (N = 32)
mpg   
   minimum 10.40
   median (IQR) 19.20 (15.43, 22.80)
   mean (sd) 20.09 ± 6.03
   maximum 33.90
cyl_factor   
   6 cylinders 7 (22)
   4 cylinders 11 (34)
   8 cylinders 14 (44)
wt   
   minimum 1.51
   median (IQR) 3.33 (2.58, 3.61)
   mean (sd) 3.22 ± 0.98
   maximum 5.42

Now, say we want to only report the minimum and maximum for each of the numeric variables and for the categorical variables we want two show the denominator for each category and for the percentage, to one digit with the percent symbol in the table. Note that when defining the list of numeric_summaries that the argument place holder is the %s% character.

new_summary <-
  qsummary(mtcars2[, c("mpg", "cyl_factor", "wt")],
           numeric_summaries = list("Minimum" = "~ min(%s)",
                                    "Maximum" = "~ max(%s)"),
           n_perc_args = list(digits = 1, show_symbol = TRUE, show_denom = "always"))
str(new_summary)
## List of 3
##  $ mpg       :List of 2
##   ..$ Minimum:Class 'formula'  language ~min(mpg)
##   .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##   ..$ Maximum:Class 'formula'  language ~max(mpg)
##   .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##  $ cyl_factor:List of 3
##   ..$ 6 cylinders:Class 'formula'  language ~qwraps2::n_perc(cyl_factor == "6 cylinders", digits = 1, show_symbol = TRUE,      show_denom = "always")
##   .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##   ..$ 4 cylinders:Class 'formula'  language ~qwraps2::n_perc(cyl_factor == "4 cylinders", digits = 1, show_symbol = TRUE,      show_denom = "always")
##   .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##   ..$ 8 cylinders:Class 'formula'  language ~qwraps2::n_perc(cyl_factor == "8 cylinders", digits = 1, show_symbol = TRUE,      show_denom = "always")
##   .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##  $ wt        :List of 2
##   ..$ Minimum:Class 'formula'  language ~min(wt)
##   .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##   ..$ Maximum:Class 'formula'  language ~max(wt)
##   .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>

The resulting table is:

summary_table(mtcars2, new_summary)
mtcars2 (N = 32)
mpg   
   Minimum 10.4
   Maximum 33.9
cyl_factor   
   6 cylinders 7/32 (21.9%)
   4 cylinders 11/32 (34.4%)
   8 cylinders 14/32 (43.8%)
wt   
   Minimum 1.513
   Maximum 5.424

3 Session Info

print(sessionInfo(), local = FALSE)
## R version 4.4.1 (2024-06-14)
## Platform: x86_64-apple-darwin20
## Running under: macOS Sonoma 14.6
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib 
## LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] survival_3.7-0 qwraps2_0.6.1 
## 
## loaded via a namespace (and not attached):
##  [1] glmnet_4.1-8      Matrix_1.7-0      gtable_0.3.5      jsonlite_1.8.9   
##  [5] dplyr_1.1.4       compiler_4.4.1    highr_0.11        tidyselect_1.2.1 
##  [9] Rcpp_1.0.13       jquerylib_0.1.4   splines_4.4.1     scales_1.3.0     
## [13] yaml_2.3.10       fastmap_1.2.0     lattice_0.22-6    ggplot2_3.5.1    
## [17] R6_2.5.1          labeling_0.4.3    generics_0.1.3    shape_1.4.6.1    
## [21] knitr_1.48        iterators_1.0.14  tibble_3.2.1      munsell_0.5.1    
## [25] bslib_0.8.0       pillar_1.9.0      rlang_1.1.4       utf8_1.2.4       
## [29] cachem_1.1.0      xfun_0.48         sass_0.4.9        cli_3.6.3        
## [33] withr_3.0.1       magrittr_2.0.3    foreach_1.5.2     digest_0.6.37    
## [37] grid_4.4.1        lifecycle_1.0.4   vctrs_0.6.5       evaluate_1.0.1   
## [41] glue_1.8.0        farver_2.1.2      codetools_0.2-20  fansi_1.0.6      
## [45] colorspace_2.1-1  rmarkdown_2.28    tools_4.4.1       pkgconfig_2.0.3  
## [49] htmltools_0.5.8.1

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.