The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
To obtain the model summaries, first you need to obtain the 2D
hexagonal bin centroids which is the 2D model
(df_bin_centroids
) and the high-dimensional coordinates of
bin centroids which represents the lifted model in high-dimensions
(df_bin
).
model <- fit_highd_model(training_data = s_curve_noise_training, x = "UMAP1",
y = "UMAP2", nldr_df_with_id = s_curve_noise_umap_scaled,
col_start_2d = "UMAP", col_start_highd = "x")
df_bin_centroids <- model$df_bin_centroids
df_bin <- model$df_bin
Let’s first compute the model summaries for training data. To do that, you need to predict 2D embedding for the training data.
pred_emb_list_training <- predict_emb(test_data = s_curve_noise_training,
df_bin_centroids = df_bin_centroids,
df_bin = df_bin, type_NLDR = "UMAP")
pred_df_training <- as.data.frame(do.call(cbind, pred_emb_list_training))
glimpse(pred_df_training)
#> Rows: 75
#> Columns: 4
#> $ pred_UMAP_1 <dbl> 0.1732051, 0.6928203, 0.8660254, 0.1732051, 0.1732051, 0.8…
#> $ pred_UMAP_2 <dbl> 0.45, 0.75, 1.05, -0.15, 0.45, 1.65, 0.75, 0.75, 0.75, 1.6…
#> $ ID <dbl> 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17, 19, 20, 21…
#> $ pred_hb_id <dbl> 12, 18, 24, 2, 12, 34, 18, 18, 18, 34, 18, 12, 29, 6, 18, …
s_curve_noise_umap_scaled |>
ggplot(aes(x = UMAP1,
y = UMAP2,
label = ID))+
geom_point(alpha=0.5) +
geom_point(data = pred_df_training, aes(x = pred_UMAP_1, y = pred_UMAP_2),
color = "red", alpha=0.5) +
coord_equal() +
theme(plot.title = element_text(hjust = 0.5, size = 18, face = "bold"),
axis.text = element_text(size = 5),
axis.title = element_text(size = 7))
Next, you can use the generated 2D embedding to compute model summaries.
gen_summary(test_data = s_curve_noise_training, prediction_df = pred_df_training,
df_bin = df_bin, col_start = "x")
#> $mse
#> [1] 0.3229922
#>
#> $aic
#> [1] -453.3167
The same workflow is followed for the test data as well.
pred_emb_list_test <- predict_emb(test_data = s_curve_noise_test,
df_bin_centroids = df_bin_centroids,
df_bin = df_bin, type_NLDR = "UMAP")
pred_df_test <- as.data.frame(do.call(cbind, pred_emb_list_test))
s_curve_noise_umap_scaled |>
ggplot(aes(x = UMAP1,
y = UMAP2,
label = ID))+
geom_point(alpha=0.5) +
geom_point(data = pred_df_test, aes(x = pred_UMAP_1, y = pred_UMAP_2),
color = "red", alpha=0.5) +
coord_equal() +
theme(plot.title = element_text(hjust = 0.5, size = 18, face = "bold"),
axis.text = element_text(size = 5),
axis.title = element_text(size = 7))
gen_summary(test_data = s_curve_noise_test, prediction_df = pred_df_test,
df_bin = df_bin, col_start = "x")
#> $mse
#> [1] 0.3458999
#>
#> $aic
#> [1] -45.78101
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.