The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

1. Quick start

library(quollr)
library(tibble)

This provides a quick introduction. We’ll walk through fitting models to high-dimensional data and a 2-D embedding, and show how to inspect the key outputs.

model <- fit_highd_model(highd_data = scurve, 
                         nldr_data = scurve_umap, 
                         b1 = 4, q = 0.1, 
                         benchmark_highdens = 5)

The output of fit_highd_model() is a named list containing several components. Let’s take a quick look at each:

## 2-D model
glimpse(model$model_2d)
#> Rows: 12
#> Columns: 5
#> $ h   <int> 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 18
#> $ c_x <dbl> 0.29620130, 0.69240260, 0.09810065, 0.49430195, 0.89050325, 0.2962…
#> $ c_y <dbl> -0.1156801, -0.1156801, 0.2274402, 0.2274402, 0.2274402, 0.5705606…
#> $ n_h <dbl> 30, 14, 75, 137, 132, 12, 132, 37, 140, 176, 67, 44
#> $ w_h <dbl> 0.030, 0.014, 0.075, 0.137, 0.132, 0.012, 0.132, 0.037, 0.140, 0.1…

## high-D model
glimpse(model$model_highd)
#> Rows: 12
#> Columns: 8
#> $ h  <int> 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 18
#> $ x1 <dbl> 0.6209517, -0.4722570, 0.8739211, -0.1848675, -0.8900024, 0.2785481…
#> $ x2 <dbl> 0.1445716, 1.6006858, 1.0675059, 0.6553456, 1.2914098, 0.7134556, 0…
#> $ x3 <dbl> 1.73384917, 1.87127122, 1.41757699, 1.81615709, 1.03602502, -0.7218…
#> $ x4 <dbl> 0.0008107566, -0.0020441796, -0.0030742350, -0.0015083059, 0.000368…
#> $ x5 <dbl> 0.0012937320, 0.0059149121, 0.0021779674, 0.0013517560, 0.000266451…
#> $ x6 <dbl> -0.014829086, 0.013645828, -0.003704260, 0.001346874, 0.001513801, …
#> $ x7 <dbl> -1.416857e-03, 3.191434e-03, 2.633164e-04, 1.226910e-03, 2.784532e-…

## wireframe data
glimpse(model$trimesh_data)
#> Rows: 23
#> Columns: 8
#> $ from       <int> 3, 3, 2, 4, 4, 6, 6, 7, 7, 9, 10, 1, 1, 2, 4, 6, 5, 7, 10, …
#> $ to         <int> 4, 6, 4, 5, 7, 10, 7, 8, 11, 12, 11, 4, 2, 5, 6, 9, 8, 10, …
#> $ x_from     <dbl> 0.09810065, 0.09810065, 0.69240260, 0.49430195, 0.49430195,…
#> $ y_from     <dbl> 0.2274402, 0.2274402, -0.1156801, 0.2274402, 0.2274402, 0.5…
#> $ x_to       <dbl> 0.49430195, 0.29620130, 0.49430195, 0.89050325, 0.69240260,…
#> $ y_to       <dbl> 0.2274402, 0.5705606, 0.2274402, 0.2274402, 0.5705606, 0.91…
#> $ from_count <dbl> 75, 75, 14, 137, 137, 12, 12, 132, 132, 140, 176, 30, 30, 1…
#> $ to_count   <dbl> 137, 12, 137, 132, 132, 176, 132, 37, 67, 44, 67, 137, 14, …

## NLDR object
glimpse(model$nldr_obj)
#> List of 3
#>  $ scaled_nldr: tibble [1,000 × 3] (S3: tbl_df/tbl/data.frame)
#>   ..$ emb1: num [1:1000] 0.277 0.697 0.779 0.173 0.218 ...
#>   ..$ emb2: num [1:1000] 0.913 0.538 0.399 0.953 0.983 ...
#>   ..$ ID  : int [1:1000] 1 2 3 4 5 6 7 8 9 10 ...
#>  $ lim1       : num [1:2] -9.15 8.55
#>  $ lim2       : num [1:2] -10.4 10.1

## Hexagonal object
glimpse(model$hb_obj)
#> List of 11
#>  $ a1         : num 0.396
#>  $ a2         : num 0.343
#>  $ bins       : num [1:2] 4 5
#>  $ start_point: num [1:2] -0.1 -0.116
#>  $ centroids  : tibble [20 × 3] (S3: tbl_df/tbl/data.frame)
#>   ..$ h  : int [1:20] 1 2 3 4 5 6 7 8 9 10 ...
#>   ..$ c_x: num [1:20] -0.1 0.2962 0.6924 1.0886 0.0981 ...
#>   ..$ c_y: num [1:20] -0.116 -0.116 -0.116 -0.116 0.227 ...
#>  $ hex_poly   :'data.frame': 120 obs. of  3 variables:
#>   ..$ h: int [1:120] 1 1 1 1 1 1 2 2 2 2 ...
#>   ..$ x: num [1:120] -0.1 -0.2981 -0.2981 -0.1 0.0981 ...
#>   ..$ y: num [1:120] 0.11307 -0.00131 -0.23005 -0.34443 -0.23005 ...
#>  $ data_hb_id : tibble [1,000 × 4] (S3: tbl_df/tbl/data.frame)
#>   ..$ emb1: num [1:1000] 0.277 0.697 0.779 0.173 0.218 ...
#>   ..$ emb2: num [1:1000] 0.913 0.538 0.399 0.953 0.983 ...
#>   ..$ ID  : int [1:1000] 1 2 3 4 5 6 7 8 9 10 ...
#>   ..$ h   : int [1:1000] 13 11 11 13 13 14 5 12 15 7 ...
#>  $ std_cts    : tibble [13 × 3] (S3: tbl_df/tbl/data.frame)
#>   ..$ h  : int [1:13] 2 3 5 6 7 10 11 12 13 14 ...
#>   ..$ n_h: int [1:13] 30 14 75 137 132 12 132 37 140 176 ...
#>   ..$ w_h: num [1:13] 0.03 0.014 0.075 0.137 0.132 0.012 0.132 0.037 0.14 0.176 ...
#>  $ b          : int 20
#>  $ m          : int 13
#>  $ pts_bins   : tibble [13 × 2] (S3: tbl_df/tbl/data.frame)
#>   ..$ h       : int [1:13] 2 3 5 6 7 10 11 12 13 14 ...
#>   ..$ pts_list:List of 13
#>  - attr(*, "class")= chr "hex_bin_obj"

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.