The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Load libraries
library(dplyr)
library(qpNCA)
library(knitr)
Define mutate_cond and locf functions
mutate_cond <- function (.data, condition, ..., envir = parent.frame()){
condition <- eval(substitute(condition), .data, envir)
if(!any(condition))return(.data) # do nothing if nothing to do
.data[condition, ] <- .data[condition, ] %>% mutate(...)
.data
}
locf <- function(x){
good <- !is.na(x)
positions <- seq(length(x))
good.positions <- good * positions
last.good.position <- cummax(good.positions)
last.good.position[last.good.position == 0] <- NA
x[last.good.position]
}
Check out Theoph data and prepare data for NCA
We use the internal Theoph dataset as input file, modify the data and add necessary columns
Furthermore, we introduce some missing values, LOQ values and time deviations
head(Theoph) %>% kable()
Subject |
Wt |
Dose |
Time |
conc |
1 |
79.6 |
4.02 |
0.00 |
0.74 |
1 |
79.6 |
4.02 |
0.25 |
2.84 |
1 |
79.6 |
4.02 |
0.57 |
6.57 |
1 |
79.6 |
4.02 |
1.12 |
10.50 |
1 |
79.6 |
4.02 |
2.02 |
9.66 |
1 |
79.6 |
4.02 |
3.82 |
8.58 |
input.data <- Theoph
#we need nominal time variable for some tasks.
ntad <- data.frame(rn=c(1:11),ntad=c(0,0.25,0.5,1,2,4,5,7,9,12,24))
input.data %<>%
group_by(Subject) %>%
mutate(subject=as.numeric(Subject),
rn=row_number(),
dose=Dose*Wt,
bloq=ifelse(conc==0,1,0),
loq=0.1,
excl_th=0
) %>%
left_join(ntad) %>%
ungroup %>%
arrange(subject,ntad) %>%
select(subject,ntad,tad=Time,conc,dose,bloq,loq,excl_th)
## Joining, by = "rn"
input.data %<>%
mutate_cond(condition=subject==2&ntad%in%c(24),conc=NA) %>%
mutate_cond(condition=subject==4&ntad%in%c(9),conc=NA) %>%
mutate_cond(condition=subject==3&ntad==9,excl_th=1) %>%
mutate_cond(condition=subject==6&ntad==24,conc=0,bloq=1) %>%
filter(!(subject==5&ntad==12))
Impute LOQ values
loqed.data = input.data %>%
correct.loq(
by = "subject",
nomtimevar = "ntad",
timevar = "tad",
depvar = "conc",
bloqvar = "bloq",
loqvar = "loq",
loqrule = 1
)
# Result:
loqed.data %>% filter(loqrule.nr!="") %>% select(subject,ntad,conc,loqrule.nr,loqrule.txt) %>% kable()
subject |
ntad |
conc |
loqrule.nr |
loqrule.txt |
1 |
0 |
0 |
LOQ1 |
BLOQ values before first measurable concentration set to 0 |
3 |
0 |
0 |
LOQ1 |
BLOQ values before first measurable concentration set to 0 |
4 |
0 |
0 |
LOQ1 |
BLOQ values before first measurable concentration set to 0 |
5 |
0 |
0 |
LOQ1 |
BLOQ values before first measurable concentration set to 0 |
6 |
0 |
0 |
LOQ1 |
BLOQ values before first measurable concentration set to 0 |
6 |
24 |
NA |
LOQ1 |
BLOQ values after first measurable concentration set to missing |
7 |
0 |
0 |
LOQ1 |
BLOQ values before first measurable concentration set to 0 |
8 |
0 |
0 |
LOQ1 |
BLOQ values before first measurable concentration set to 0 |
9 |
0 |
0 |
LOQ1 |
BLOQ values before first measurable concentration set to 0 |
12 |
0 |
0 |
LOQ1 |
BLOQ values before first measurable concentration set to 0 |
Estimation of terminal half-life
th = loqed.data %>%
est.thalf(
by = "subject",
timevar = "tad",
depvar = "conc",
includeCmax = "Y",
exclvar = "excl_th"
)
# Result:
head(th) %>% kable()
subject |
no.points |
intercept |
lambda_z |
r.squared |
adj.r.squared |
start_th |
end_th |
thalf |
includeCmax |
points_excluded |
1 |
3 |
8.212078 |
0.0915758 |
0.9989638 |
0.9979276 |
9.22 |
23.85 |
7.569107 |
Y |
N |
2 |
3 |
8.959057 |
0.0777431 |
0.9964163 |
0.9928325 |
6.98 |
12.05 |
8.915865 |
Y |
N |
3 |
6 |
8.688001 |
0.0818231 |
0.9962482 |
0.9953103 |
2.02 |
24.12 |
8.471285 |
Y |
Y |
4 |
3 |
8.703249 |
0.0962171 |
0.9999286 |
0.9998572 |
7.03 |
24.08 |
7.203989 |
Y |
N |
5 |
5 |
10.568234 |
0.0948933 |
0.9957650 |
0.9943534 |
3.62 |
24.17 |
7.304489 |
Y |
N |
6 |
3 |
12.790536 |
0.1192526 |
0.9867217 |
0.9734435 |
7.03 |
12.00 |
5.812428 |
Y |
N |
Plot individual regression plots
plot_reg(
loqed.data,
by = "subject",
th = th,
bloqvar = "bloq",
timevar = "tad",
depvar = "conc",
timelab = "Time (h)",
deplab = "Conc (ng/mL)",
exclvar = "excl_th",
plotdir = NA
)
## [[1]]
##
## [[2]]
##
## [[3]]
##
## [[4]]
##
## [[5]]
##
## [[6]]
##
## [[7]]
##
## [[8]]
##
## [[9]]
##
## [[10]]
##
## [[11]]
##
## [[12]]
Calculate Cmax and Tmax
ctmax = input.data %>% calc.ctmax(
by = "subject",
timevar="tad",
depvar="conc"
)
# Result:
head(ctmax) %>% kable()
subject |
cmax |
tmax |
1 |
6.44 |
1.15 |
2 |
7.09 |
3.48 |
3 |
7.56 |
2.02 |
4 |
8.00 |
0.98 |
5 |
8.20 |
1.02 |
6 |
8.33 |
1.92 |
Correct time deviations at critical time points
ct.data= loqed.data %>%
correct.time(
by="subject",
nomtimevar="ntad",
timevar="tad",
depvar="conc",
th=th,
tau=24,
tstart=4,
tend=9,
teval=12,
reg="sd",
method=1
)
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
# Result:
ct.data %>% filter(subject<=5&(trule.nr!=""|create.nr!="")) %>% select(subject,ntad,conc,applies.to.time,trule.nr,trule.txt,create.txt) %>% kable()
subject |
ntad |
conc |
applies.to.time |
trule.nr |
trule.txt |
create.txt |
1 |
4 |
5.53 |
TSTART |
SDT-2 |
Concentration ( 5.53 ) at deviating time ( t=3.57 instead of 4 ) corrected to 5.353 by interpolation (sample taken too early) |
|
1 |
9 |
3.46 |
TEND |
SDT-2 |
Concentration ( 3.46 ) at deviating time ( t=9.22 instead of 9 ) corrected to 3.515 by interpolation (sample taken too late) |
|
1 |
12 |
2.78 |
TEVAL |
SDT-2 |
Concentration ( 2.78 ) at deviating time ( t=12.1 instead of 12 ) corrected to 2.804 by interpolation (sample taken too late) |
|
1 |
24 |
0.92 |
TAU |
SDT-3 |
Concentration ( 0.92 ) at deviating time ( t=23.85 instead of 24 ) corrected to 0.907 by extrapolation (sample taken too early) |
|
2 |
4 |
7.09 |
TSTART |
SDT-2 |
Concentration ( 7.09 ) at deviating time ( t=3.48 instead of 4 ) corrected to 6.943 by interpolation (sample taken too early) |
|
2 |
12 |
3.53 |
TEVAL |
SDT-2 |
Concentration ( 3.53 ) at deviating time ( t=12.05 instead of 12 ) corrected to 3.544 by interpolation (sample taken too late) |
|
2 |
24 |
NA |
TAU |
SDT-2 |
Concentration ( NA ) at deviating time ( t=24.22 instead of 24 ) corrected to NA by interpolation (sample taken too late) |
|
3 |
4 |
6.59 |
TSTART |
SDT-2 |
Concentration ( 6.59 ) at deviating time ( t=3.53 instead of 4 ) corrected to 6.37 by interpolation (sample taken too early) |
|
3 |
9 |
4.57 |
TEND |
SDT-2 |
Concentration ( 4.57 ) at deviating time ( t=9.07 instead of 9 ) corrected to 4.576 by interpolation (sample taken too late) |
|
3 |
12 |
3.00 |
TEVAL |
SDT-2 |
Concentration ( 3 ) at deviating time ( t=12.1 instead of 12 ) corrected to 3.052 by interpolation (sample taken too late) |
|
3 |
24 |
1.25 |
TAU |
SDT-2 |
Concentration ( 1.25 ) at deviating time ( t=24.12 instead of 24 ) corrected to 1.267 by interpolation (sample taken too late) |
|
4 |
4 |
5.87 |
TSTART |
SDT-2 |
Concentration ( 5.87 ) at deviating time ( t=3.6 instead of 4 ) corrected to 5.687 by interpolation (sample taken too early) |
|
4 |
9 |
NA |
TEND |
SDT-2 |
Concentration ( NA ) at deviating time ( t=9.03 instead of 9 ) corrected to NA by interpolation (sample taken too late) |
|
4 |
12 |
2.69 |
TEVAL |
SDT-2 |
Concentration ( 2.69 ) at deviating time ( t=12.12 instead of 12 ) corrected to 2.731 by interpolation (sample taken too late) |
|
4 |
24 |
0.86 |
TAU |
SDT-2 |
Concentration ( 0.86 ) at deviating time ( t=24.08 instead of 24 ) corrected to 0.872 by interpolation (sample taken too late) |
|
5 |
4 |
7.50 |
TSTART |
SDT-2 |
Concentration ( 7.5 ) at deviating time ( t=3.62 instead of 4 ) corrected to 7.162 by interpolation (sample taken too early) |
|
5 |
12 |
NA |
|
|
|
Missing record at t=12 added |
5 |
24 |
1.05 |
TAU |
SDT-2 |
Concentration ( 1.05 ) at deviating time ( t=24.17 instead of 24 ) corrected to 1.093 by interpolation (sample taken too late) |
|
Impute missing concentrations at critical time points
cc.ct.data = ct.data %>%
correct.conc(
by ="subject",
nomtimevar="ntad",
tau=24,
tstart=4,
tend=9,
teval=12,
th=th,
reg="sd",
ss="n",
route="EV",
method=1
)
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
## Joining, by = "ptime"
# Result:
cc.ct.data %>% filter(crule.nr!="") %>% select(subject,ntad,conc,applies.to.conc,crule.nr,crule.txt) %>% kable()
subject |
ntad |
conc |
applies.to.conc |
crule.nr |
crule.txt |
2 |
0 |
0.15 |
PREDOSE |
SDC-1 |
Missing or measurable concentration at (SD) PREDOSE set to 0 |
2 |
24 |
NA |
TAU |
SDC-3 |
Missing concentration at t=24 corrected to 1.394 by extrapolation |
4 |
9 |
NA |
TEND |
SDC-2 |
Missing concentration at t=9 corrected to 3.769 by interpolation |
5 |
12 |
NA |
TEVAL |
SDC-2 |
Missing concentration at t=12 corrected to 4.139 by interpolation |
6 |
24 |
NA |
TAU |
SDC-3 |
Missing concentration at t=24 corrected to 0.72 by extrapolation |
10 |
0 |
0.24 |
PREDOSE |
SDC-1 |
Missing or measurable concentration at (SD) PREDOSE set to 0 |
11 |
0 |
0.74 |
PREDOSE |
SDC-1 |
Missing or measurable concentration at (SD) PREDOSE set to 0 |
Tabulate corrections
tab_corr = cc.ct.data %>%
tab.corr(
by="subject",
nomtimevar="ntad"
)
# Result:
tab_corr %>% kable()
subject |
ntad |
applies.to |
rule.nr |
rule.txt |
1 |
0 |
NA |
LOQ1 |
BLOQ values before first measurable concentration set to 0 |
1 |
4 |
TSTART |
SDT-2 |
Concentration ( 5.53 ) at deviating time ( t=3.57 instead of 4 ) corrected to 5.353 by interpolation (sample taken too early) |
1 |
9 |
TEND |
SDT-2 |
Concentration ( 3.46 ) at deviating time ( t=9.22 instead of 9 ) corrected to 3.515 by interpolation (sample taken too late) |
1 |
12 |
TEVAL |
SDT-2 |
Concentration ( 2.78 ) at deviating time ( t=12.1 instead of 12 ) corrected to 2.804 by interpolation (sample taken too late) |
1 |
24 |
TAU |
SDT-3 |
Concentration ( 0.92 ) at deviating time ( t=23.85 instead of 24 ) corrected to 0.907 by extrapolation (sample taken too early) |
2 |
0 |
PREDOSE |
SDC-1 |
Missing or measurable concentration at (SD) PREDOSE set to 0 |
2 |
4 |
TSTART |
SDT-2 |
Concentration ( 7.09 ) at deviating time ( t=3.48 instead of 4 ) corrected to 6.943 by interpolation (sample taken too early) |
2 |
12 |
TEVAL |
SDT-2 |
Concentration ( 3.53 ) at deviating time ( t=12.05 instead of 12 ) corrected to 3.544 by interpolation (sample taken too late) |
2 |
24 |
TAU |
SDT-2 |
Concentration ( NA ) at deviating time ( t=24.22 instead of 24 ) corrected to NA by interpolation (sample taken too late) |
2 |
24 |
TAU |
SDC-3 |
Missing concentration at t=24 corrected to 1.394 by extrapolation |
3 |
0 |
NA |
LOQ1 |
BLOQ values before first measurable concentration set to 0 |
3 |
4 |
TSTART |
SDT-2 |
Concentration ( 6.59 ) at deviating time ( t=3.53 instead of 4 ) corrected to 6.37 by interpolation (sample taken too early) |
3 |
9 |
TEND |
SDT-2 |
Concentration ( 4.57 ) at deviating time ( t=9.07 instead of 9 ) corrected to 4.576 by interpolation (sample taken too late) |
3 |
12 |
TEVAL |
SDT-2 |
Concentration ( 3 ) at deviating time ( t=12.1 instead of 12 ) corrected to 3.052 by interpolation (sample taken too late) |
3 |
24 |
TAU |
SDT-2 |
Concentration ( 1.25 ) at deviating time ( t=24.12 instead of 24 ) corrected to 1.267 by interpolation (sample taken too late) |
4 |
0 |
NA |
LOQ1 |
BLOQ values before first measurable concentration set to 0 |
4 |
4 |
TSTART |
SDT-2 |
Concentration ( 5.87 ) at deviating time ( t=3.6 instead of 4 ) corrected to 5.687 by interpolation (sample taken too early) |
4 |
9 |
TEND |
SDT-2 |
Concentration ( NA ) at deviating time ( t=9.03 instead of 9 ) corrected to NA by interpolation (sample taken too late) |
4 |
9 |
TEND |
SDC-2 |
Missing concentration at t=9 corrected to 3.769 by interpolation |
4 |
12 |
TEVAL |
SDT-2 |
Concentration ( 2.69 ) at deviating time ( t=12.12 instead of 12 ) corrected to 2.731 by interpolation (sample taken too late) |
4 |
24 |
TAU |
SDT-2 |
Concentration ( 0.86 ) at deviating time ( t=24.08 instead of 24 ) corrected to 0.872 by interpolation (sample taken too late) |
5 |
0 |
NA |
LOQ1 |
BLOQ values before first measurable concentration set to 0 |
5 |
4 |
TSTART |
SDT-2 |
Concentration ( 7.5 ) at deviating time ( t=3.62 instead of 4 ) corrected to 7.162 by interpolation (sample taken too early) |
5 |
12 |
NA |
- |
Missing record at t=12 added |
5 |
12 |
TEVAL |
SDC-2 |
Missing concentration at t=12 corrected to 4.139 by interpolation |
5 |
24 |
TAU |
SDT-2 |
Concentration ( 1.05 ) at deviating time ( t=24.17 instead of 24 ) corrected to 1.093 by interpolation (sample taken too late) |
6 |
0 |
NA |
LOQ1 |
BLOQ values before first measurable concentration set to 0 |
6 |
4 |
TSTART |
SDT-2 |
Concentration ( 6.85 ) at deviating time ( t=3.5 instead of 4 ) corrected to 6.597 by interpolation (sample taken too early) |
6 |
24 |
NA |
LOQ1 |
BLOQ values after first measurable concentration set to missing |
6 |
24 |
TAU |
SDT-2 |
Concentration ( NA ) at deviating time ( t=24.3 instead of 24 ) corrected to NA by interpolation (sample taken too late) |
6 |
24 |
TAU |
SDC-3 |
Missing concentration at t=24 corrected to 0.72 by extrapolation |
7 |
0 |
NA |
LOQ1 |
BLOQ values before first measurable concentration set to 0 |
7 |
4 |
TSTART |
SDT-2 |
Concentration ( 7.54 ) at deviating time ( t=3.5 instead of 4 ) corrected to 7.323 by interpolation (sample taken too early) |
7 |
9 |
TEND |
SDT-2 |
Concentration ( 5.33 ) at deviating time ( t=9.02 instead of 9 ) corrected to 5.335 by interpolation (sample taken too late) |
7 |
12 |
TEVAL |
SDT-2 |
Concentration ( 4.19 ) at deviating time ( t=11.98 instead of 12 ) corrected to 4.185 by interpolation (sample taken too early) |
7 |
24 |
TAU |
SDT-2 |
Concentration ( 1.15 ) at deviating time ( t=24.65 instead of 24 ) corrected to 1.306 by interpolation (sample taken too late) |
8 |
0 |
NA |
LOQ1 |
BLOQ values before first measurable concentration set to 0 |
8 |
4 |
TSTART |
SDT-2 |
Concentration ( 5.66 ) at deviating time ( t=3.53 instead of 4 ) corrected to 5.663 by interpolation (sample taken too early) |
8 |
9 |
TEND |
SDT-2 |
Concentration ( 4.11 ) at deviating time ( t=8.8 instead of 9 ) corrected to 4.042 by interpolation (sample taken too early) |
8 |
12 |
TEVAL |
SDT-2 |
Concentration ( 3.16 ) at deviating time ( t=11.6 instead of 12 ) corrected to 3.096 by interpolation (sample taken too early) |
8 |
24 |
TAU |
SDT-2 |
Concentration ( 1.12 ) at deviating time ( t=24.43 instead of 24 ) corrected to 1.188 by interpolation (sample taken too late) |
9 |
0 |
NA |
LOQ1 |
BLOQ values before first measurable concentration set to 0 |
9 |
4 |
TSTART |
SDT-2 |
Concentration ( 9.75 ) at deviating time ( t=3.52 instead of 4 ) corrected to 9.385 by interpolation (sample taken too early) |
9 |
9 |
TEND |
SDT-2 |
Concentration ( 6.11 ) at deviating time ( t=9.03 instead of 9 ) corrected to 6.117 by interpolation (sample taken too late) |
9 |
12 |
TEVAL |
SDT-2 |
Concentration ( 4.57 ) at deviating time ( t=12.05 instead of 12 ) corrected to 4.595 by interpolation (sample taken too late) |
9 |
24 |
TAU |
SDT-2 |
Concentration ( 1.17 ) at deviating time ( t=24.15 instead of 24 ) corrected to 1.212 by interpolation (sample taken too late) |
10 |
0 |
PREDOSE |
SDC-1 |
Missing or measurable concentration at (SD) PREDOSE set to 0 |
10 |
4 |
TSTART |
SDT-2 |
Concentration ( 10.21 ) at deviating time ( t=3.55 instead of 4 ) corrected to 9.901 by interpolation (sample taken too early) |
10 |
9 |
TEND |
SDT-2 |
Concentration ( 7.14 ) at deviating time ( t=9.38 instead of 9 ) corrected to 7.285 by interpolation (sample taken too late) |
10 |
12 |
TEVAL |
SDT-2 |
Concentration ( 5.68 ) at deviating time ( t=12.1 instead of 12 ) corrected to 5.734 by interpolation (sample taken too late) |
10 |
24 |
TAU |
SDT-3 |
Concentration ( 2.42 ) at deviating time ( t=23.7 instead of 24 ) corrected to 2.366 by extrapolation (sample taken too early) |
11 |
0 |
PREDOSE |
SDC-1 |
Missing or measurable concentration at (SD) PREDOSE set to 0 |
11 |
4 |
TSTART |
SDT-2 |
Concentration ( 8.58 ) at deviating time ( t=3.82 instead of 4 ) corrected to 8.549 by interpolation (sample taken too early) |
11 |
9 |
TEND |
SDT-2 |
Concentration ( 6.89 ) at deviating time ( t=9.05 instead of 9 ) corrected to 6.904 by interpolation (sample taken too late) |
11 |
12 |
TEVAL |
SDT-2 |
Concentration ( 5.94 ) at deviating time ( t=12.12 instead of 12 ) corrected to 5.977 by interpolation (sample taken too late) |
11 |
24 |
TAU |
SDT-2 |
Concentration ( 3.28 ) at deviating time ( t=24.37 instead of 24 ) corrected to 3.36 by interpolation (sample taken too late) |
12 |
0 |
NA |
LOQ1 |
BLOQ values before first measurable concentration set to 0 |
12 |
4 |
TSTART |
SDT-2 |
Concentration ( 8.74 ) at deviating time ( t=3.5 instead of 4 ) corrected to 8.352 by interpolation (sample taken too early) |
12 |
9 |
TEND |
SDT-2 |
Concentration ( 5.9 ) at deviating time ( t=9.1 instead of 9 ) corrected to 5.957 by interpolation (sample taken too late) |
12 |
24 |
TAU |
SDT-2 |
Concentration ( 1.57 ) at deviating time ( t=24.35 instead of 24 ) corrected to 1.649 by interpolation (sample taken too late) |
Calculate PK parameters NOT based on lambda_z
par = cc.ct.data %>%
calc.par(by = 'subject',
tau=24,
teval=12,
tstart=4,
tend=9,
route="EV",
method=1)
# Result:
head(par) %>% kable()
subject |
route |
method |
tlast |
clast.obs |
tlast.ok |
t0.ok |
aucall |
auclast |
aumcall |
aumclast |
mrtall |
mrtlast |
calc.tau |
auctau |
aumctau |
tau |
calc.teval |
auc12 |
teval |
calc.part |
auc4_9 |
tstart |
tend |
c0 |
area.back.extr |
1 |
EV |
1 |
23.85 |
0.92 |
1 |
1 |
73.77555 |
73.77555 |
609.1524 |
609.1524 |
8.256833 |
8.256833 |
1 |
73.97837 |
612.3497 |
24 |
1 |
51.75887 |
12 |
1 |
21.64179 |
4 |
9 |
NA |
NA |
2 |
EV |
1 |
12.05 |
3.53 |
1 |
1 |
62.25685 |
62.25685 |
354.0998 |
354.0998 |
5.687724 |
5.687724 |
1 |
91.67850 |
808.1730 |
24 |
1 |
62.08000 |
12 |
1 |
28.32875 |
4 |
9 |
NA |
NA |
3 |
EV |
1 |
24.12 |
1.25 |
1 |
1 |
88.55995 |
88.55995 |
739.5346 |
739.5346 |
8.350666 |
8.350666 |
1 |
88.40890 |
737.1499 |
24 |
1 |
62.71486 |
12 |
1 |
26.17989 |
4 |
9 |
NA |
NA |
4 |
EV |
1 |
24.08 |
0.86 |
1 |
1 |
80.44595 |
80.44595 |
614.9855 |
614.9855 |
7.644705 |
7.644705 |
1 |
80.37666 |
614.1894 |
24 |
1 |
58.89166 |
12 |
1 |
23.37641 |
4 |
9 |
NA |
NA |
5 |
EV |
1 |
24.17 |
1.05 |
1 |
1 |
102.32475 |
102.32475 |
767.2143 |
767.2143 |
7.497837 |
7.497837 |
1 |
102.14258 |
767.7359 |
24 |
1 |
70.75194 |
12 |
1 |
28.50079 |
4 |
9 |
NA |
NA |
6 |
EV |
1 |
12.00 |
3.01 |
1 |
1 |
67.48030 |
67.48030 |
349.9481 |
349.9481 |
5.185929 |
5.185929 |
1 |
89.85776 |
670.2872 |
24 |
1 |
67.48030 |
12 |
1 |
27.80327 |
4 |
9 |
NA |
NA |
Calculate PK parameters based on lambda_z
# Create a covariates file, containing at least the dose given
cov = input.data %>%
distinct(subject,dose)
par <- par %>%
calc.par.th(
by="subject",
th=th ,
covariates=cov,
dose="dose",
factor=1,
reg="sd",
ss="n"
)
# Result:
head(par) %>% kable()
subject |
method |
tlast |
clast.obs |
tlast.ok |
t0.ok |
aucall |
auclast |
aumcall |
aumclast |
mrtall |
mrtlast |
calc.tau |
auctau |
aumctau |
tau |
calc.teval |
auc12 |
teval |
calc.part |
auc4_9 |
tstart |
tend |
c0 |
area.back.extr |
no.points |
intercept |
lambda_z |
r.squared |
adj.r.squared |
start_th |
end_th |
thalf |
includeCmax |
points_excluded |
dose |
factor |
reg |
ss |
route |
clast.pred |
aucinf.obs |
aucinf.pred |
aumcinf.obs |
aumcinf.pred |
cl.f.obs |
cl.f.pred |
mrtinf.obs |
mrtinf.pred |
vz.f.obs |
vz.f.pred |
vss.obs |
vss.pred |
pctextr.obs |
pctextr.pred |
pctback.obs |
pctback.pred |
cl.obs |
cl.pred |
vz.obs |
vz.pred |
cl.f.ss |
cl.ss |
1 |
1 |
23.85 |
0.92 |
1 |
1 |
73.77555 |
73.77555 |
609.1524 |
609.1524 |
8.256833 |
8.256833 |
1 |
73.97837 |
612.3497 |
24 |
1 |
51.75887 |
12 |
1 |
21.64179 |
4 |
9 |
NA |
NA |
3 |
8.212078 |
0.0915758 |
0.9989638 |
0.9979276 |
9.22 |
23.85 |
7.569107 |
Y |
N |
320.000 |
1 |
sd |
n |
ev |
0.9245229 |
83.82187 |
83.87126 |
958.4620 |
960.1793 |
3.817620 |
3.815371 |
11.434510 |
11.448252 |
41.68807 |
41.66352 |
NA |
NA |
11.985320 |
12.037150 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
2 |
1 |
12.05 |
3.53 |
1 |
1 |
62.25685 |
62.25685 |
354.0998 |
354.0998 |
5.687724 |
5.687724 |
1 |
91.67850 |
808.1730 |
24 |
1 |
62.08000 |
12 |
1 |
28.32875 |
4 |
9 |
NA |
NA |
3 |
8.959057 |
0.0777431 |
0.9964163 |
0.9928325 |
6.98 |
12.05 |
8.915865 |
Y |
N |
319.770 |
1 |
sd |
n |
ev |
3.5108576 |
107.66280 |
107.41657 |
1485.2925 |
1479.1583 |
2.970107 |
2.976915 |
13.795782 |
13.770299 |
38.20411 |
38.29168 |
NA |
NA |
42.174223 |
42.041671 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
3 |
1 |
24.12 |
1.25 |
1 |
1 |
88.55995 |
88.55995 |
739.5346 |
739.5346 |
8.350666 |
8.350666 |
1 |
88.40890 |
737.1499 |
24 |
1 |
62.71486 |
12 |
1 |
26.17989 |
4 |
9 |
NA |
NA |
6 |
8.688001 |
0.0818231 |
0.9962482 |
0.9953103 |
2.02 |
24.12 |
8.471285 |
Y |
Y |
319.365 |
1 |
sd |
n |
ev |
1.2072785 |
103.83680 |
103.31468 |
1294.7180 |
1275.7434 |
3.075644 |
3.091187 |
12.468778 |
12.348132 |
37.58892 |
37.77888 |
NA |
NA |
14.712367 |
14.281349 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
4 |
1 |
24.08 |
0.86 |
1 |
1 |
80.44595 |
80.44595 |
614.9855 |
614.9855 |
7.644705 |
7.644705 |
1 |
80.37666 |
614.1894 |
24 |
1 |
58.89166 |
12 |
1 |
23.37641 |
4 |
9 |
NA |
NA |
3 |
8.703249 |
0.0962171 |
0.9999286 |
0.9998572 |
7.03 |
24.08 |
7.203989 |
Y |
N |
319.800 |
1 |
sd |
n |
ev |
0.8579476 |
89.38407 |
89.36274 |
923.1107 |
922.3753 |
3.577819 |
3.578673 |
10.327463 |
10.321700 |
37.18484 |
37.19372 |
NA |
NA |
9.999676 |
9.978193 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
5 |
1 |
24.17 |
1.05 |
1 |
1 |
102.32475 |
102.32475 |
767.2143 |
767.2143 |
7.497837 |
7.497837 |
1 |
102.14258 |
767.7359 |
24 |
1 |
70.75194 |
12 |
1 |
28.50079 |
4 |
9 |
NA |
NA |
5 |
10.568234 |
0.0948933 |
0.9957650 |
0.9943534 |
3.62 |
24.17 |
7.304489 |
Y |
N |
319.365 |
1 |
sd |
n |
ev |
1.0663923 |
113.38981 |
113.56255 |
1151.2620 |
1157.2576 |
2.816523 |
2.812239 |
10.153135 |
10.190486 |
29.68094 |
29.63579 |
NA |
NA |
9.758423 |
9.895693 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
6 |
1 |
12.00 |
3.01 |
1 |
1 |
67.48030 |
67.48030 |
349.9481 |
349.9481 |
5.185929 |
5.185929 |
1 |
89.85776 |
670.2872 |
24 |
1 |
67.48030 |
12 |
1 |
27.80327 |
4 |
9 |
NA |
NA |
3 |
12.790536 |
0.1192526 |
0.9867217 |
0.9734435 |
7.03 |
12.00 |
5.812428 |
Y |
N |
318.560 |
1 |
sd |
n |
ev |
3.0577347 |
92.72084 |
93.12112 |
864.4906 |
872.6506 |
3.435689 |
3.420921 |
9.323585 |
9.371135 |
28.81018 |
28.68634 |
NA |
NA |
27.222078 |
27.534915 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
Combine All NCA parameters in one data frame
par_all = left_join(par, ctmax)
## Joining, by = "subject"
# Result:
head(par_all) %>% kable()
subject |
method |
tlast |
clast.obs |
tlast.ok |
t0.ok |
aucall |
auclast |
aumcall |
aumclast |
mrtall |
mrtlast |
calc.tau |
auctau |
aumctau |
tau |
calc.teval |
auc12 |
teval |
calc.part |
auc4_9 |
tstart |
tend |
c0 |
area.back.extr |
no.points |
intercept |
lambda_z |
r.squared |
adj.r.squared |
start_th |
end_th |
thalf |
includeCmax |
points_excluded |
dose |
factor |
reg |
ss |
route |
clast.pred |
aucinf.obs |
aucinf.pred |
aumcinf.obs |
aumcinf.pred |
cl.f.obs |
cl.f.pred |
mrtinf.obs |
mrtinf.pred |
vz.f.obs |
vz.f.pred |
vss.obs |
vss.pred |
pctextr.obs |
pctextr.pred |
pctback.obs |
pctback.pred |
cl.obs |
cl.pred |
vz.obs |
vz.pred |
cl.f.ss |
cl.ss |
cmax |
tmax |
1 |
1 |
23.85 |
0.92 |
1 |
1 |
73.77555 |
73.77555 |
609.1524 |
609.1524 |
8.256833 |
8.256833 |
1 |
73.97837 |
612.3497 |
24 |
1 |
51.75887 |
12 |
1 |
21.64179 |
4 |
9 |
NA |
NA |
3 |
8.212078 |
0.0915758 |
0.9989638 |
0.9979276 |
9.22 |
23.85 |
7.569107 |
Y |
N |
320.000 |
1 |
sd |
n |
ev |
0.9245229 |
83.82187 |
83.87126 |
958.4620 |
960.1793 |
3.817620 |
3.815371 |
11.434510 |
11.448252 |
41.68807 |
41.66352 |
NA |
NA |
11.985320 |
12.037150 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
6.44 |
1.15 |
2 |
1 |
12.05 |
3.53 |
1 |
1 |
62.25685 |
62.25685 |
354.0998 |
354.0998 |
5.687724 |
5.687724 |
1 |
91.67850 |
808.1730 |
24 |
1 |
62.08000 |
12 |
1 |
28.32875 |
4 |
9 |
NA |
NA |
3 |
8.959057 |
0.0777431 |
0.9964163 |
0.9928325 |
6.98 |
12.05 |
8.915865 |
Y |
N |
319.770 |
1 |
sd |
n |
ev |
3.5108576 |
107.66280 |
107.41657 |
1485.2925 |
1479.1583 |
2.970107 |
2.976915 |
13.795782 |
13.770299 |
38.20411 |
38.29168 |
NA |
NA |
42.174223 |
42.041671 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
7.09 |
3.48 |
3 |
1 |
24.12 |
1.25 |
1 |
1 |
88.55995 |
88.55995 |
739.5346 |
739.5346 |
8.350666 |
8.350666 |
1 |
88.40890 |
737.1499 |
24 |
1 |
62.71486 |
12 |
1 |
26.17989 |
4 |
9 |
NA |
NA |
6 |
8.688001 |
0.0818231 |
0.9962482 |
0.9953103 |
2.02 |
24.12 |
8.471285 |
Y |
Y |
319.365 |
1 |
sd |
n |
ev |
1.2072785 |
103.83680 |
103.31468 |
1294.7180 |
1275.7434 |
3.075644 |
3.091187 |
12.468778 |
12.348132 |
37.58892 |
37.77888 |
NA |
NA |
14.712367 |
14.281349 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
7.56 |
2.02 |
4 |
1 |
24.08 |
0.86 |
1 |
1 |
80.44595 |
80.44595 |
614.9855 |
614.9855 |
7.644705 |
7.644705 |
1 |
80.37666 |
614.1894 |
24 |
1 |
58.89166 |
12 |
1 |
23.37641 |
4 |
9 |
NA |
NA |
3 |
8.703249 |
0.0962171 |
0.9999286 |
0.9998572 |
7.03 |
24.08 |
7.203989 |
Y |
N |
319.800 |
1 |
sd |
n |
ev |
0.8579476 |
89.38407 |
89.36274 |
923.1107 |
922.3753 |
3.577819 |
3.578673 |
10.327463 |
10.321700 |
37.18484 |
37.19372 |
NA |
NA |
9.999676 |
9.978193 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
8.00 |
0.98 |
5 |
1 |
24.17 |
1.05 |
1 |
1 |
102.32475 |
102.32475 |
767.2143 |
767.2143 |
7.497837 |
7.497837 |
1 |
102.14258 |
767.7359 |
24 |
1 |
70.75194 |
12 |
1 |
28.50079 |
4 |
9 |
NA |
NA |
5 |
10.568234 |
0.0948933 |
0.9957650 |
0.9943534 |
3.62 |
24.17 |
7.304489 |
Y |
N |
319.365 |
1 |
sd |
n |
ev |
1.0663923 |
113.38981 |
113.56255 |
1151.2620 |
1157.2576 |
2.816523 |
2.812239 |
10.153135 |
10.190486 |
29.68094 |
29.63579 |
NA |
NA |
9.758423 |
9.895693 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
8.20 |
1.02 |
6 |
1 |
12.00 |
3.01 |
1 |
1 |
67.48030 |
67.48030 |
349.9481 |
349.9481 |
5.185929 |
5.185929 |
1 |
89.85776 |
670.2872 |
24 |
1 |
67.48030 |
12 |
1 |
27.80327 |
4 |
9 |
NA |
NA |
3 |
12.790536 |
0.1192526 |
0.9867217 |
0.9734435 |
7.03 |
12.00 |
5.812428 |
Y |
N |
318.560 |
1 |
sd |
n |
ev |
3.0577347 |
92.72084 |
93.12112 |
864.4906 |
872.6506 |
3.435689 |
3.420921 |
9.323585 |
9.371135 |
28.81018 |
28.68634 |
NA |
NA |
27.222078 |
27.534915 |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
NA |
8.33 |
1.92 |
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.