The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
qPRAentry is a package designed for the quantitative
pest risk assessment (PRA) entry step, which is the initial phase of a
PRA that evaluates the movement of a plant pest into an area.
Two examples of the process flow in the PRA entry step, and the
application of the functions available in the qPRAentry
package, are shown below. The example A uses
the functions applicable to any country in the world using ISO codes (ISO 3166
Maintenance Agency). The example B uses
the functions designed for use with the NUTS code system (NUTS - Nomenclature of
territorial units for statistics).
In both cases, trade data are required for the commodity that is considered to be a potential pathway for the pest under assessment. The data required include:
This example uses simulated trade data for Northern American countries, consisting of a list of data frames with the required data. These data use country identifiers by ISO 3166-1 (alpha-2) codes. Trade data are arranged in three-months time periods.
The load_csv() function included in the
qPRAentry package can be used to import the data from CSV
files.
Total quantity of commodity imported from third countries.
This data frame must contain the columns: reporter (importing countries, in this case by ISO codes), partner (exporting countries), value (quantity of commodity), and time_period (time period of the trade activity).
Using the example data, we select imports from all third countries (column partner):
extra_total <- datatrade_NorthAm$extra_import
head(extra_total)
#>   reporter partner time_period    value
#> 1       BM  CNTR_1  April-June    73.58
#> 2       BM  CNTR_2  April-June    17.55
#> 3       BM  CNTR_3  April-June    26.61
#> 4       BM  CNTR_4  April-June 19349.36
#> 5       BM  CNTR_5  April-June  8070.73
#> 6       CA  CNTR_1  April-June  6628.23Quantity of commodity imported from third countries where the pest is present.
This data frame must contain the columns: reporter (importing countries, in this case by ISO codes), partner (exporting countries where the pest is present), value (quantity of commodity), and time_period (time period of the trade activity).
Here, we assume that the pest is present in countries “CNTR_1” and “CNTR_2”:
library(dplyr)
CNTR_pest <- c("CNTR_1", "CNTR_2")
extra_pest <- datatrade_NorthAm$extra_import %>% filter(partner%in%CNTR_pest)
head(extra_pest)
#>   reporter partner time_period   value
#> 1       BM  CNTR_1  April-June   73.58
#> 2       BM  CNTR_2  April-June   17.55
#> 3       CA  CNTR_1  April-June 6628.23
#> 4       CA  CNTR_2  April-June  910.00
#> 5       GL  CNTR_1  April-June 1403.07
#> 6       GL  CNTR_2  April-June 6783.81Quantity of commodity traded between countries of interest.
This data frame must contain the columns: reporter (importing countries, in this case by ISO codes), partner (exporting countries, in this case by ISO codes), value (quantity of commodity), and time_period (time period of the trade activity):
intra_trade  <- datatrade_NorthAm$intra_trade
head(intra_trade)
#>   reporter partner time_period   value
#> 1       BM      CA  April-June  792.86
#> 2       BM      GL  April-June 1291.80
#> 3       BM      PM  April-June  830.42
#> 4       BM      US  April-June   11.57
#> 5       CA      BM  April-June  608.07
#> 6       CA      GL  April-June 6289.37Quantity of commodity produced internally in each country of interest.
This data frame must contain the columns: reporter (producing countries, in this case by ISO codes), value (quantity of commodity), and time_period (time period of production):
internal_production  <- datatrade_NorthAm$internal_production
head(internal_production)
#>   reporter   time_period     value
#> 1       BM January-March 119625.01
#> 2       CA January-March  55555.83
#> 3       GL January-March  17790.80
#> 4       PM January-March  70680.64
#> 5       US January-March  45125.31
#> 6       BM    April-June  79240.12TradeData object from the above data
framesThe trade_data() function assembles the trade data to
generate a TradeData object needed to subsequently
calculate the quantity of potentially infested/infected commodity
entering each country of interest.
Using the arguments filter_IDs and
filter_period we can select the countries and time periods
of interest, respectively. If nothing is specified in these arguments,
by default all countries and time periods included in the data will be
selected. For this example, the United States (US) and Canada (CA) are
selected, and for the time periods January-March and April-June.
trade_NorthAm <- trade_data(extra_total = extra_total,
                            extra_pest = extra_pest,
                            intra_trade = intra_trade,
                            internal_production = internal_production,
                            filter_IDs = c("US", "CA"),
                            filter_period = c("January-March", "April-June"))See total trade:
head(trade_NorthAm$total_trade)
#>   country_IDs   time_period extra_total extra_pest intra_import intra_export
#> 1          US January-March     7796.46    6888.32      5448.33        35.49
#> 2          US    April-June     3567.79    1379.75        12.10      1035.70
#> 3          CA January-March    23129.97     470.94        35.49      5448.33
#> 4          CA    April-June    14003.04    7538.23      1035.70        12.10
#>   internal_production total_available export_prop
#> 1            45125.31        52921.77           1
#> 2            17928.84        21496.63           1
#> 3            55555.83        78685.80           1
#> 4            16840.86        30843.90           1See trade between countries:
head(trade_NorthAm$intra_trade)
#>   reporter partner   time_period   value export_prop
#> 1       CA      US    April-June 1035.70           1
#> 2       CA      US January-March   35.49           1
#> 3       US      CA    April-June   12.10           1
#> 4       US      CA January-March 5448.33           1Below is an example of how to visualise data using ISO 3166-1
(alpha-2) country codes, displaying the total quantity of commodity
available in each country. The plot_countries() function
can be used to display other data organised by using ISO 3166-1
(alpha-2) country codes. This function allows to incorporate other
utilities of the ggplot2 package.
library(ggplot2)
plot_countries(data = trade_NorthAm$total_trade,
               iso_col = "country_IDs", 
               values_col = "total_available",
               title = "Total commodity available",
               legend_title = "units") +
  xlim(-180,-20) + ylim(0,90)ntrade_NorthAm_summary <- ntrade(trade_data = trade_NorthAm,
                                 summarise_result = c("mean", "sd", 
                                                      "quantile(0.025)", 
                                                      "median",
                                                      "quantile(0.975)"))
head(ntrade_NorthAm_summary)
#>   country_IDs    mean       sd  median    q0.025   q0.975
#> 1          US 4116.27 3959.853 4116.27 1456.2333 6776.307
#> 2          CA 4022.35 5062.035 4022.35  621.9207 7422.779Plot the \(N_{trade}\) median for each country:
plot_countries(data = ntrade_NorthAm_summary,
               iso_col = "country_IDs", 
               values_col = "median",
               title = "Ntrade median",
               legend_title = "units") +
  xlim(-180,-20) + ylim(0,90)The redist_iso() function requires an additional data
frame with values for each subdivision according to which the
redistribution is performed proportionally. The redistribution is shown
below using simulated commodity consumption data for each territorial
subdivision of the United States (US) and Canada (CA) using ISO 3166-2
codes.
# read data for redistribution and filter subdivisions of US and CA
redist_data <- datatrade_NorthAm$consumption_iso2 %>% 
  filter(substr(iso_3166_2, 1, 2) %in% c("US", "CA"))
data_redist <- redist_iso(data = ntrade_NorthAm_summary,
                          iso_col = "country_IDs",
                          values_col = "median",
                          redist_data = redist_data,
                          redist_iso_col = "iso_3166_2",
                          redist_values_col = "value")
head(data_redist)
#> # A tibble: 6 × 4
#>   ISO_1 ISO_2 proportion median
#>   <chr> <chr>      <dbl>  <dbl>
#> 1 US    US-WA   0.000308   1.27
#> 2 CA    CA-BC   0.0447   180.  
#> 3 US    US-ID   0.0485   199.  
#> 4 US    US-MT   0.00857   35.3 
#> 5 CA    CA-AB   0.217    873.  
#> 6 CA    CA-SK   0.0457   184.Note: The qPRAentry package currently does not include a
built-in function to plot data at the subdivision level using ISO 3166-2
codes, although it is available using NUTS codes (see B.3). However, users can easily combine the
output with other packages, such as rnaturalearth and
ggplot2, to create maps representing these data.
The number of potential founder populations (\(NPFP\)) of a pest entering a country or region can be estimated using a pathway model. This model combines the \(N_{trade}\) data with parameters that are relevant in the estimation of the entry of the pest under assessment. Each of these parameters must be assigned a suitable probability distribution. The following shows how the \(N_{trade}\) data obtained above at the country level are combined with other parameters to set up the pathway model and estimate the \(NPFP\).
First, the conceptual model is designed. Here, three parameters have been added in different ways as an illustrative demonstration: \[NPFP = N_{trade} \cdot (1/P1) \cdot ((P2 \cdot 1000) + P3)\]
A distribution is then assigned to each parameter and all relevant
information, along with the desired number of iterations, is
incorporated into the pathway_model() function. Note that
\(N_{trade}\) should not be included in
the model expression.
# pathway model (excluding ntrade)
model <- "(1/P1) * ((P2 * 1000) + P3)"
# parameter distributions
parameters_dist <- list(P1 = list(dist = "unif", min = 0, max = 1),
                        P2 = list(dist = "beta", shape1 = 1, shape2 = 5),
                        P3 = list(dist = "norm", mean = 0, sd = 1))
res_pathway <- pathway_model(ntrade_data = ntrade_NorthAm_summary,
                             IDs_col = "country_IDs",
                             values_col = "median",
                             expression = model,
                             parameters = parameters_dist,
                             niter = 100)
head(res_pathway)
#> # A tibble: 3 × 8
#> # Groups:   country_IDs [3]
#>   country_IDs     Mean        SD    Min   Q0.25   Median    Q0.75        Max
#>   <chr>          <dbl>     <dbl>  <dbl>   <dbl>    <dbl>    <dbl>      <dbl>
#> 1 US          4508059. 12139686. 31561. 430918. 1067629. 2206858.  79000791.
#> 2 CA          4405199. 11862696. 30841. 421085. 1043269. 2156504.  77198236.
#> 3 Total       8913259. 24002382. 62402. 852003. 2110898. 4363362. 156199027.The result also includes the total \(NPFP\) for the set of countries considered:
res_pathway[res_pathway$country_IDs == "Total",]
#> # A tibble: 1 × 8
#> # Groups:   country_IDs [1]
#>   country_IDs     Mean        SD    Min   Q0.25   Median    Q0.75        Max
#>   <chr>          <dbl>     <dbl>  <dbl>   <dbl>    <dbl>    <dbl>      <dbl>
#> 1 Total       8913259. 24002382. 62402. 852003. 2110898. 4363362. 156199027.Plot the \(NPFP\) median for each country:
plot_countries(data = res_pathway,
               iso_col = "country_IDs", 
               values_col = "Median",
               colors = c("#DCE319FF", "#55C667FF", "#33638DFF"),
               title = "NPFP median",
               legend_title = "NPFP") +
  xlim(-180,-20) + ylim(0,90)This example uses simulated trade data for EU countries, consisting of a list of data frames containing the required data. These data use country identifiers by NUTS codes. Trade data are arranged into annual periods for 2020 and 2021.
The load_csv() function included in the
qPRAentry package can be used to import the data from CSV
files.
Total quantity of commodity imported from third countries, i.e., non-EU countries.
This data frame must contain the columns: reporter (importing countries, in this case by NUTS0 codes), partner (exporting countries), value (quantity of commodity), and time_period (time period of the trade activity).
Using the example data, we select entries where the column partner is coded as “Extra_Total”:
extra_total <- datatrade_EU$extra_import %>% filter(partner=="Extra_Total")
head(extra_total)
#>   reporter     partner time_period    value
#> 1       AT Extra_Total        2020  8407.20
#> 2       BE Extra_Total        2020  3414.69
#> 3       BG Extra_Total        2020 10589.83
#> 4       CY Extra_Total        2020 12928.32
#> 5       CZ Extra_Total        2020  7788.30
#> 6       DE Extra_Total        2020 18997.89Quantity of commodity imported from third countries where the pest is present.
This data frame must contain the columns: reporter (importing countries, in this case by NUTS0 codes), partner (exporting countries where the pest is present), value (quantity of commodity), and time_period (time period of the trade activity).
Here, we assume that the pest is present in countries “CNTR_1”, “CNTR_2”, and “CNTR_3”, i.e., those that are not coded as “Extra_Total” in the column partner:
extra_pest <- datatrade_EU$extra_import %>% filter(partner!="Extra_Total")
head(extra_pest)
#>   reporter partner time_period   value
#> 1       AT  CNTR_1        2020 6633.68
#> 2       AT  CNTR_2        2020  358.73
#> 3       AT  CNTR_3        2020   63.57
#> 4       BE  CNTR_1        2020   92.26
#> 5       BE  CNTR_2        2020  217.68
#> 6       BE  CNTR_3        2020 3040.03Quantity of commodity traded between EU countries.
This data frame must contain the columns: reporter (importing countries, in this case by NUTS0 codes), partner (exporting countries, in this case by NUTS0 codes), value (quantity of commodity), and time_period (time period of the trade activity):
intra_trade  <- datatrade_EU$intra_trade
head(intra_trade)
#>   reporter partner time_period    value
#> 1       AT      BE        2020  2552.55
#> 2       AT      BG        2020     1.86
#> 3       AT      CY        2020  2779.99
#> 4       AT      CZ        2020  2623.18
#> 5       AT      DE        2020 16573.06
#> 6       AT      DK        2020   514.85Quantity of commodity produced internally in each EU country of interest.
This data frame must contain the columns: reporter (producing countries, in this case by NUTS0 codes), value (quantity of commodity), and time_period (time period of production):
TradeData object from the above data
framesThe trade_data() function assembles the trade data to
generate a TradeData object needed to subsequently
calculate the quantity of potentially infested/infected commodity
entering each EU country.
In this case, all countries and periods included in the data are
taken into account, as the default values are used for the
filter_IDs and filter_period arguments (see A.1 for other specifications)
trade_EU <- trade_data(extra_total = extra_total,
                       extra_pest = extra_pest,
                       intra_trade = intra_trade,
                       internal_production = internal_production)
#> Note: For countries where Intra Export is greater than total available (Extra Total + Internal Production), Intra Export is considered proportional to the total available.See total trade:
head(trade_EU$total_trade)
#>   country_IDs time_period extra_total extra_pest intra_import intra_export
#> 1          AT        2020     8407.20    7055.98     61568.35     70569.03
#> 2          AT        2021    18202.96    5496.02     68935.72     47508.63
#> 3          BE        2020     3414.69    3349.97     69398.50     49224.42
#> 4          BE        2021    13012.26   12512.76     61191.53     39433.73
#> 5          BG        2020    10589.83   10549.06     91934.42     52322.74
#> 6          BG        2021     6352.41    1609.16     55453.02     50902.10
#>   internal_production total_available export_prop
#> 1           154199.46       162606.66   1.0000000
#> 2            72406.04        90609.00   1.0000000
#> 3            47394.88        50809.57   1.0000000
#> 4           110732.12       123744.38   1.0000000
#> 5           106367.69       116957.52   1.0000000
#> 6            26423.92        32776.33   0.6439092See trade between EU countries:
head(trade_EU$intra_trade)
#>   reporter partner time_period     value export_prop
#> 1       AT      BE        2020 2552.5500   1.0000000
#> 2       AT      BE        2021 1097.9300   1.0000000
#> 3       AT      BG        2020    1.8600   1.0000000
#> 4       AT      BG        2021  376.1331   0.6439092
#> 5       AT      CY        2020 2779.9900   1.0000000
#> 6       AT      CY        2021 2212.8455   0.7807875Below is an example of how to visualise data using NUTS codes,
displaying the total quantity of commodity available in each country.
The plot_nuts() function can be used to display other data
organised by NUTS codes. This function allows to incorporate other
utilities of the ggplot2 package.
plot_nuts(data = trade_EU$total_trade, 
          nuts_col = "country_IDs", 
          values_col = "total_available",
          nuts_level = 0,
          title = "Total commodity available",
          legend_title = "units") +
  xlim(-30,50) + ylim(25,70)\(N_{trade}\) summary for the time periods (see A.2 for other specifications).
ntrade_EU <- ntrade(trade_data = trade_EU,
                    summarise_result = c("mean", "sd"))
head(ntrade_EU)
#>   country_IDs     mean        sd
#> 1          AT 8515.413  644.5668
#> 2          BE 9160.731 5923.4801
#> 3          BG 7175.771 5056.1994
#> 4          CY 4611.218  170.4081
#> 5          CZ 5763.743 1458.0454
#> 6          DE 5997.080 3003.6830Plot the \(N_{trade}\) mean for each country:
plot_nuts(data = ntrade_EU, 
          nuts_col="country_IDs", 
          values_col="mean",
          nuts_level = 0,
          title = "Ntrade mean",
          legend_title = "units") +
  xlim(-40,50) + ylim(25,70)The redist_nuts() function can be used with human
population data from Eurostat or with an alternative data frame
containing values for each territorial subdivision according to which
the redistribution will be performed proportionally.
The redistribution of the \(N_{trade}\) mean obtained above from NUTS0 to NUTS2, based on the human population of the years 2020 and 2021 in each NUTS2, is shown below.
ntrade_redist_pop <- redist_nuts(data = ntrade_EU,
                                 nuts_col = "country_IDs",
                                 values_col = "mean",
                                 to_nuts = 2,
                                 redist_data = "population",
                                 population_year = c(2020, 2021))head(ntrade_redist_pop)
#> # A tibble: 6 × 4
#>   NUTS2 NUTS0 proportion  mean
#>   <chr> <chr>      <dbl> <dbl>
#> 1 AT11  AT        0.0331  282.
#> 2 AT12  AT        0.189  1612.
#> 3 AT13  AT        0.215  1830.
#> 4 AT21  AT        0.0630  536.
#> 5 AT22  AT        0.140  1191.
#> 6 AT31  AT        0.167  1426.Plot the \(N_{trade}\) mean for each NUTS2 region:
plot_nuts(data = ntrade_redist_pop,
          nuts_col = "NUTS2",
          values_col = "mean",
          nuts_level = 2,
          title = "Ntrade mean",
          legend_title = "units") +
   xlim(-40,50) + ylim(25,70)The redistribution of the \(N_{trade}\) mean obtained above from NUTS0 to NUTS1 using simulated consumption data for each NUTS1 is shown below.
# read data for redistribution
nuts1_data <- datatrade_EU$consumption_nuts1
ntrade_redist_df <- redist_nuts(data = ntrade_EU,
                           nuts_col = "country_IDs",
                           values_col = "mean",
                           to_nuts = 1,
                           redist_data = nuts1_data,
                           redist_nuts_col = "NUTS_ID",
                           redist_values_col = "value")
head(ntrade_redist_df)
#> # A tibble: 6 × 4
#>   NUTS1 NUTS0 proportion  mean
#>   <chr> <chr>      <dbl> <dbl>
#> 1 PT2   PT         0.104 1298.
#> 2 BE1   BE         0.130 1189.
#> 3 BE2   BE         0.128 1175.
#> 4 BE3   BE         0.742 6797.
#> 5 BG3   BG         0.122  872.
#> 6 BG4   BG         0.878 6303.Plot the \(N_{trade}\) mean for each NUTS1:
plot_nuts(data = ntrade_redist_df,
          nuts_level = 1,
          nuts_col = "NUTS1",
          values_col = "mean",
          title = "Ntrade mean",
          legend_title = "units") +
   xlim(-40,50) + ylim(25,70)As shown in A.4, the pathway model allows the \(NPFP\) to be estimated. The following shows its use with \(N_{trade}\) data obtained at NUTS2 level and a pathway model defined as: \[NPFP = N_{trade} \cdot (1/P1) \cdot P2 \cdot P3\]
A distribution is then assigned to each parameter and all relevant
information, along with the desired number of iterations, is
incorporated into the pathway_model() function. Note that
\(N_{trade}\) must not be included in
the model expression.
# pathway model (excluding ntrade)
model <- "(1/P1) * P2 * P3"
# parameter distributions
parameters_dist <- list(P1 = list(dist = "beta", shape1 = 0.5, shape2 = 1),
                        P2 = list(dist = "gamma", shape = 1.5, scale = 100),
                        P3 = list(dist = "lnorm", mean = 5, sd = 2))
res_pathway <- pathway_model(ntrade_data = ntrade_redist_pop,
                             IDs_col = "NUTS2",
                             values_col = "mean",
                             expression = model,
                             parameters = parameters_dist,
                             niter = 100)
head(res_pathway)
#> # A tibble: 6 × 8
#> # Groups:   NUTS2 [6]
#>   NUTS2         Mean            SD     Min     Q0.25    Median     Q0.75     Max
#>   <chr>        <dbl>         <dbl>   <dbl>     <dbl>     <dbl>     <dbl>   <dbl>
#> 1 AT11  11952068617.  91647344433. 110586.  3770994. 15390430.    1.27e8 9.05e11
#> 2 AT12  68321600323. 523883642064. 632141. 21556130. 87976304.    7.26e8 5.17e12
#> 3 AT13  77571869788. 594813843260. 717729. 24474680. 99887684.    8.24e8 5.88e12
#> 4 AT21  22739994422. 174368150660. 210400.  7174690. 29281818.    2.42e8 1.72e12
#> 5 AT22  50473961103. 387029613579. 467007. 15925026. 64994270.    5.36e8 3.82e12
#> 6 AT31  60441642937. 463460865733. 559232. 19069926. 77829447.    6.42e8 4.58e12The result also includes the total \(NPFP\) for the set of NUTS2 considered:
res_pathway[res_pathway$NUTS2 == "Total",]
#> # A tibble: 1 × 8
#> # Groups:   NUTS2 [1]
#>   NUTS2    Mean      SD       Min       Q0.25      Median        Q0.75     Max
#>   <chr>   <dbl>   <dbl>     <dbl>       <dbl>       <dbl>        <dbl>   <dbl>
#> 1 Total 7.45e12 5.72e13 68964557. 2351704149. 9597930738. 79163465728. 5.65e14Plot the \(NPFP\) mean for each NUTS2:
plot_nuts(data = res_pathway,
          nuts_level = 2,
          nuts_col = "NUTS2",
          values_col = "Mean",
          colors = c("#DCE319FF", "#55C667FF", "#33638DFF"),
          title = "NPFP mean",
          legend_title = "NPFP") +
   xlim(-40,50) + ylim(25,70)These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.