The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: The q-Gaussian Distribution
Version: 0.1.8
Author: Emerson Luis de Santa Helena <elsh@ufs.br> Wagner Santos de Lima <wagnersantos.ufs@hotmail.com>
Maintainer: Wagner Santos de Lima <wagnersantos.ufs@hotmail.com>
Description: Density, distribution function, quantile function and random generation for the q-gaussian distribution with parameters mu and sig.
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
Imports: Rcpp (≥ 0.12.10), stats, robustbase, zipfR
LinkingTo: Rcpp
LazyData: true
RoxygenNote: 6.0.1
NeedsCompilation: yes
Packaged: 2018-07-12 18:31:56 UTC; elsh
Repository: CRAN
Date/Publication: 2018-07-12 18:50:06 UTC

Chaotic, a random number generator of q-Gaussian random variables.

Description

Given a random number generator of q-Gaussian random variables for a range of q values, -8 < q < 3, based on deterministic map dynamics. To yield a 'q' value, a characteristic entropic index of the q-gaussian distributions.

Usage

Chaotic(n,q,v0,z0)

Arguments

n

number of observations. If length(n) > 1, the length is taken to be the number required.

q

entropic index.

v0

a random seed.

z0

a random seed.

Value

a number q < 3, and the standard error.

Author(s)

Emerson Luis de Santa Helena , Wagner Santos de Lima

References

Umeno, K., Sato, A., IEEE Transactions on Information Theory (Volume:59,Issue:5,May 2013).Chaotic Method for Generating q-Gaussian Random Variables.

See Also

Distributions for other standard distributions, including dt and dcauchy. Distributions

Examples

t=Chaotic(100000,0,.1,.1)
hist(t,breaks=100)

The q-gaussian Distribution

Description

Density, distribution function, quantile function and random generation for the q-gaussian distribution with parameters mu and sig.

Usage

cqgauss(p, q = 0, mu = 0, sig = 1, lower.tail = TRUE)

Arguments

p

vector of probabilities.

q

entropic index.

mu

a value for q-mean.

sig

a value for q-variance.

lower.tail

logical; if TRUE (default), probabilities are P[X <= x] otherwise, P[X > x].

Details

If q , mu and sig values are not specified, they assume the default values of 0, 0 and 1, respectively. Defining Z=(q-1)/(3-q), the q-gaussian distribution has density wrinten as

p(x) = (sig*Beta(alpha/2,1/2))^-1*(1+Z(x-mu)^2/sig^2)^-(1+1/Z)/2

where alpha = 1 - 1/Z when q < 1 and 1/Z when 1 < q < 3.

Value

dqgauss gives the density, pqgauss gives the distribution function, cqgauss gives the quantile function, and rqgauss generates random deviates.

Author(s)

Emerson Luis de Santa Helena , Wagner Santos de Lima

References

Thistleton, W.,Marsh, J. A.,Nelson, K.,Tsallis, C., (2007) IEEE Transactions on Information Theory, 53(12):4805

Tsallis, C., (2009) Introduction to Nonextensive Statistical Mechanics. Springer.

de Santa Helena, E. L., Nascimento, C. M., and Gerhardt, G. J., (2015) Alternative way to charecterize a q-gaussian distribution by a robust heavy tail measurement. Physica A, (435):44-50.

Manuscript submitted for publication (2016) qGaussian: Tools to Explore Applications of Tsallis Statistics

See Also

Distributions for other standard distributions, including dt and dcauchy. Distributions

Examples

 qv <- c(2.8,2.5,2,1.01,0,-5); nn <- 700
 xrg <- sqrt((3-qv[6])/(1-qv[6]))
 xr <- seq(-xrg,xrg,by=2*xrg/nn)
 y0 <- dqgauss(xr,qv[6])
 plot(xr,y0,ty='l',xlim=range(-4.5,4.5),ylab='p(x)',xlab='x')
 for (i in 1:5){
 if (qv[i]< 1) xrg <- sqrt((3-qv[i])/(1-qv[i]))
 else xrg <- 4.5
 vby <- 2*xrg/nn
 xr <- seq(-xrg,xrg,by=2*xrg/nn)
 y0 <- dqgauss(xr,qv[i])
 points (xr,y0,ty='l',col=(i+1))
}
 legend(2, 0.4, legend =c(expression(paste(q==-5)),expression(paste(q==0)),
 expression(paste(q==1.01)),expression(paste(q==2)),expression(paste(q==2.5)),
 expression(paste(q==2.8))),col = c(1,6,5,4,3,2), lty = c(1,1,1,1,1,1))
                          ######
 qv <- 0
 rr <- rqgauss(2^16,qv)
 nn <- 70
 xrg <- sqrt((3-qv)/(1-qv))
 vby <- 2*xrg/(nn)
 xr <- seq(-xrg,xrg,by=vby)
 hist (rr,breaks=xr,freq=FALSE,xlab="x",main='')
 y <- dqgauss(xr)
 lines(xr,y/sum(y*vby),cex=.5,col=2,lty=4)


The q-gaussian Distribution

Description

Density, distribution function, quantile function and random generation for the q-gaussian distribution with parameters mu and sig.

Usage

dqgauss(x, q = 0, mu = 0, sig = 1)

Arguments

x

vector of quantiles.

q

entropic index.

mu

a value for q-mean.

sig

a value for q-variance.

Details

If q , mu and sig values are not specified, they assume the default values of 0, 0 and 1, respectively. Defining Z=(q-1)/(3-q), the q-gaussian distribution has density wrinten as

p(x) = (sig*Beta(alpha/2,1/2))^-1*(1+Z(x-mu)^2/sig^2)^-(1+1/Z)/2

where alpha = 1 - 1/Z when q < 1 and 1/Z when 1 < q < 3.

Value

dqgauss gives the density, pqgauss gives the distribution function, cqgauss gives the quantile function, and rqgauss generates random deviates.

Author(s)

Emerson Luis de Santa Helena , Wagner Santos de Lima

References

Thistleton, W.,Marsh, J. A.,Nelson, K.,Tsallis, C., (2007) IEEE Transactions on Information Theory, 53(12):4805

Tsallis, C., (2009) Introduction to Nonextensive Statistical Mechanics. Springer.

de Santa Helena, E. L., Nascimento, C. M., and Gerhardt, G. J., (2015) Alternative way to charecterize a q-gaussian distribution by a robust heavy tail measurement. Physica A, (435):44-50.

Manuscript submitted for publication (2016) qGaussian: Tools to Explore Applications of Tsallis Statistics

See Also

Distributions for other standard distributions, including dt and dcauchy. Distributions

Examples

 qv <- c(2.8,2.5,2,1.01,0,-5); nn <- 700
 xrg <- sqrt((3-qv[6])/(1-qv[6]))
 xr <- seq(-xrg,xrg,by=2*xrg/nn)
 y0 <- dqgauss(xr,qv[6])
 plot(xr,y0,ty='l',xlim=range(-4.5,4.5),ylab='p(x)',xlab='x')
 for (i in 1:5){
 if (qv[i]< 1) xrg <- sqrt((3-qv[i])/(1-qv[i]))
 else xrg <- 4.5
 vby <- 2*xrg/nn
 xr <- seq(-xrg,xrg,by=2*xrg/nn)
 y0 <- dqgauss(xr,qv[i])
 points (xr,y0,ty='l',col=(i+1))
}
 legend(2, 0.4, legend =c(expression(paste(q==-5)),expression(paste(q==0)),
 expression(paste(q==1.01)),expression(paste(q==2)),expression(paste(q==2.5)),
 expression(paste(q==2.8))),col = c(1,6,5,4,3,2), lty = c(1,1,1,1,1,1))
                          ######
 qv <- 0
 rr <- rqgauss(2^16,qv)
 nn <- 70
 xrg <- sqrt((3-qv)/(1-qv))
 vby <- 2*xrg/(nn)
 xr <- seq(-xrg,xrg,by=vby)
 hist (rr,breaks=xr,freq=FALSE,xlab="x",main='')
 y <- dqgauss(xr)
 lines(xr,y/sum(y*vby),cex=.5,col=2,lty=4)


The q-gaussian Distribution

Description

Density, distribution function, quantile function and random generation for the q-gaussian distribution with parameters mu and sig.

Usage

pqgauss(x, q = 0, mu = 0, sig = 1, lower.tail = TRUE)

Arguments

x

vector of quantiles.

q

entropic index.

mu

a value for q-mean.

sig

a value for q-variance.

lower.tail

logical; if TRUE (default), probabilities are P[X <= x] otherwise, P[X > x].

Details

If q , mu and sig values are not specified, they assume the default values of 0, 0 and 1, respectively. Defining Z=(q-1)/(3-q), the q-gaussian distribution has density wrinten as

p(x) = (sig*Beta(alpha/2,1/2))^-1*(1+Z(x-mu)^2/sig^2)^-(1+1/Z)/2

where alpha = 1 - 1/Z when q < 1 and 1/Z when 1 < q < 3.

Value

dqgauss gives the density, pqgauss gives the distribution function, cqgauss gives the quantile function, and rqgauss generates random deviates.

Author(s)

Emerson Luis de Santa Helena , Wagner Santos de Lima

References

Thistleton, W.,Marsh, J. A.,Nelson, K.,Tsallis, C., (2007) IEEE Transactions on Information Theory, 53(12):4805

Tsallis, C., (2009) Introduction to Nonextensive Statistical Mechanics. Springer.

de Santa Helena, E. L., Nascimento, C. M., and Gerhardt, G. J., (2015) Alternative way to charecterize a q-gaussian distribution by a robust heavy tail measurement. Physica A, (435):44-50.

Manuscript submitted for publication (2016) qGaussian: Tools to Explore Applications of Tsallis Statistics

See Also

Distributions for other standard distributions, including dt and dcauchy. Distributions

Examples

 qv <- c(2.8,2.5,2,1.01,0,-5); nn <- 700
 xrg <- sqrt((3-qv[6])/(1-qv[6]))
 xr <- seq(-xrg,xrg,by=2*xrg/nn)
 y0 <- dqgauss(xr,qv[6])
 plot(xr,y0,ty='l',xlim=range(-4.5,4.5),ylab='p(x)',xlab='x')
 for (i in 1:5){
 if (qv[i]< 1) xrg <- sqrt((3-qv[i])/(1-qv[i]))
 else xrg <- 4.5
 vby <- 2*xrg/nn
 xr <- seq(-xrg,xrg,by=2*xrg/nn)
 y0 <- dqgauss(xr,qv[i])
 points (xr,y0,ty='l',col=(i+1))
}
 legend(2, 0.4, legend =c(expression(paste(q==-5)),expression(paste(q==0)),
 expression(paste(q==1.01)),expression(paste(q==2)),expression(paste(q==2.5)),
 expression(paste(q==2.8))),col = c(1,6,5,4,3,2), lty = c(1,1,1,1,1,1))
                          ######
 qv <- 0
 rr <- rqgauss(2^16,qv)
 nn <- 70
 xrg <- sqrt((3-qv)/(1-qv))
 vby <- 2*xrg/(nn)
 xr <- seq(-xrg,xrg,by=vby)
 hist (rr,breaks=xr,freq=FALSE,xlab="x",main='')
 y <- dqgauss(xr)
 lines(xr,y/sum(y*vby),cex=.5,col=2,lty=4)


qbymc, a q value estimator founded upon medcouple.

Description

Given a random data set, the 'qbymc' uses the medcouple, a robust measure of tail weights, to yield a 'q' value, a characteristic entropic index of the q-gaussian distributions.

Usage

qbymc(x)

Arguments

x

numeric vector

Value

a number q < 3, and the standard error.

Author(s)

Emerson Luis de Santa Helena , Wagner Santos de Lima

References

de Santa Helena, E. L., Nascimento, C. M., and Gerhardt, G. J., (2015) Alternative way to charecterize a q-gaussian distribution by a robust heavy tail measurement. Physica A, (435):44-50.

See Also

Robustbase for medcouple. mc

Examples

set.seed(0002)
rr <- rqgauss(1000,1.333)
qbymc(rr)


The q-gaussian Distribution

Description

Density, distribution function, quantile function and random generation for the q-gaussian distribution with parameters mu and sig.

Usage

rqgauss(n, q = 0, mu = 0, sig = 1, meth = "Box-Muller")

Arguments

n

number of observations. If length(n) > 1, the length is taken to be the number required.

q

entropic index.

mu

a value for q-mean.

sig

a value for q-variance.

meth

method used at random generator

Details

If q , mu and sig values are not specified, they assume the default values of 0, 0 and 1, respectively. Defining Z=(q-1)/(3-q), the q-gaussian distribution has density wrinten as

p(x) = (sig*Beta(alpha/2,1/2))^-1*(1+Z(x-mu)^2/sig^2)^-(1+1/Z)/2

where alpha = 1 - 1/Z when q < 1 and 1/Z when 1 < q < 3.

For different methods use: meth = "Chaotic" , meth = "Quantile" and meth = "Box-Muller"

Value

dqgauss gives the density, pqgauss gives the distribution function, cqgauss gives the quantile function, and rqgauss generates random deviates.

Author(s)

Emerson Luis de Santa Helena , Wagner Santos de Lima

References

Umeno, K., Sato, A., IEEE Transactions on Information Theory (Volume:59,Issue:5,May 2013).Chaotic Method for Generating q-Gaussian Random Variables.

Thistleton, W.,Marsh, J. A.,Nelson, K.,Tsallis, C., (2007) IEEE Transactions on Information Theory, 53(12):4805

Tsallis, C., (2009) Introduction to Nonextensive Statistical Mechanics. Springer.

de Santa Helena, E. L., Nascimento, C. M., and Gerhardt, G. J., (2015) Alternative way to characterize a q-gaussian distribution by a robust heavy tail measurement. Physica A, (435):44-50.

de Lima, Wagner S., de Santa Helena, E. L., qGaussian: Tools to Explore Applications of Tsallis Statistics. arXiv:1703.06172

See Also

Distributions for other standard distributions, including dt and dcauchy. Distributions

Examples

 qv <- c(2.8,2.5,2,1.01,0,-5); nn <- 700
 xrg <- sqrt((3-qv[6])/(1-qv[6]))
 xr <- seq(-xrg,xrg,by=2*xrg/nn)
 y0 <- dqgauss(xr,qv[6])
 plot(xr,y0,ty='l',xlim=range(-4.5,4.5),ylab='p(x)',xlab='x')
 for (i in 1:5){
 if (qv[i]< 1) xrg <- sqrt((3-qv[i])/(1-qv[i]))
 else xrg <- 4.5
 vby <- 2*xrg/nn
 xr <- seq(-xrg,xrg,by=2*xrg/nn)
 y0 <- dqgauss(xr,qv[i])
 points (xr,y0,ty='l',col=(i+1))
}
 legend(2, 0.4, legend =c(expression(paste(q==-5)),expression(paste(q==0)),
 expression(paste(q==1.01)),expression(paste(q==2)),expression(paste(q==2.5)),
 expression(paste(q==2.8))),col = c(1,6,5,4,3,2), lty = c(1,1,1,1,1,1))
                          ######
 qv <- 0
 rr <- rqgauss(2^16,qv)
 nn <- 70
 xrg <- sqrt((3-qv)/(1-qv))
 vby <- 2*xrg/(nn)
 xr <- seq(-xrg,xrg,by=vby)
 hist (rr,breaks=xr,freq=FALSE,xlab="x",main='')
 y <- dqgauss(xr)
 lines(xr,y/sum(y*vby),cex=.5,col=2,lty=4)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.