The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
With the psfmi
package you can pool Cox regression
models by using
the following pooling methods: RR (Rubin’s Rules), D1, D2, and MPR
(Median R Rule). You can also use forward or backward selection from the
pooled model. This vignette show you examples of how to apply these
procedures.
If you set p.crit at 1 than no selection of variables takes place. Either using direction = “FW” or direction = “BW” will produce the same result.
library(psfmi)
pool_coxr <- psfmi_coxr(data=lbpmicox, nimp=5, impvar="Impnr",
formula = Surv(Time, Status) ~ Duration + Radiation + Onset +
Function + Age + Previous + Tampascale + JobControl +
JobDemand + Social + factor(Expect_cat), p.crit=1,
method="D1", direction = "BW")
pool_coxr$RR_model
#> $`Step 1 - no variables removed -`
#> term estimate std.error statistic df p.value
#> 1 Duration -0.007738082 0.003989357 -1.9396814 178.7494 0.05399243
#> 2 Radiation -0.074924387 0.153336031 -0.4886287 178.9424 0.62570287
#> 3 Onset -0.093736647 0.175892468 -0.5329202 179.0136 0.59474977
#> 4 Function 0.043959177 0.016917684 2.5984159 175.2854 0.01016263
#> 5 Age -0.008853266 0.007712097 -1.1479713 177.7066 0.25252344
#> 6 Previous -0.098349421 0.199199997 -0.4937220 178.0134 0.62211113
#> 7 Tampascale -0.023267973 0.014089917 -1.6513918 133.5549 0.10100803
#> 8 JobControl -0.008379513 0.008329969 -1.0059477 178.6831 0.31580101
#> 9 JobDemand -0.021840998 0.015512484 -1.4079626 178.3078 0.16088320
#> 10 Social -0.051348486 0.024912588 -2.0611462 178.3036 0.04074068
#> 11 factor(Expect_cat)2 0.243295714 0.231183479 1.0523923 177.6191 0.29404919
#> 12 factor(Expect_cat)3 0.227055353 0.200259380 1.1338063 178.6187 0.25839523
#> HR lower.EXP upper.EXP
#> 1 0.9922918 0.9845108 1.0001342
#> 2 0.9278136 0.6855705 1.2556522
#> 3 0.9105225 0.6435046 1.2883376
#> 4 1.0449397 1.0106267 1.0804177
#> 5 0.9911858 0.9762151 1.0063861
#> 6 0.9063322 0.6117408 1.3427877
#> 7 0.9770006 0.9501492 1.0046109
#> 8 0.9916555 0.9754881 1.0080908
#> 9 0.9783958 0.9488992 1.0088093
#> 10 0.9499476 0.9043761 0.9978154
#> 11 1.2754457 0.8082175 2.0127772
#> 12 1.2548993 0.8452496 1.8630856
pool_coxr$multiparm
#> $`Step 1 - no variables removed -`
#> p-values D1 F-statistic
#> Duration 0.052418576 3.7623639
#> Radiation 0.625104588 0.2387580
#> Onset 0.594088831 0.2840039
#> Function 0.009371567 6.7517650
#> Age 0.250982797 1.3178380
#> Previous 0.621503127 0.2437614
#> Tampascale 0.099111558 2.7270949
#> JobControl 0.314440908 1.0119309
#> JobDemand 0.159143091 1.9823588
#> Social 0.039289895 4.2483236
#> factor(Expect_cat) 0.485351826 0.7228839
Back to Examples
library(psfmi)
pool_coxr <- psfmi_coxr(data=lbpmicox, nimp=5, impvar="Impnr",
formula = Surv(Time, Status) ~ Duration + Radiation + Onset +
Function + Age + Previous + Tampascale + JobControl +
JobDemand + Social + factor(Expect_cat), p.crit=0.05,
method="D1", direction = "FW")
#> Entered at Step 1 is - Function
#> Entered at Step 2 is - Social
#> Entered at Step 3 is - Duration
#>
#> Selection correctly terminated,
#> No new variables entered the model
pool_coxr$RR_model_final
#> $`Final model`
#> term estimate std.error statistic df p.value HR
#> 1 Duration -0.007605055 0.003742491 -2.032084 188.0122 0.0435521399 0.9924238
#> 2 Function 0.056490633 0.015414714 3.664722 188.0122 0.0003219893 1.0581167
#> 3 Social -0.051992380 0.022611457 -2.299382 188.0122 0.0225821316 0.9493361
#> lower.EXP upper.EXP
#> 1 0.9851240 0.9997776
#> 2 1.0264257 1.0907861
#> 3 0.9079217 0.9926396
pool_coxr$multiparm_final
#> $`Step 2 - selected - Duration`
#> p-value D1
#> Duration 0.0421452
#> Radiation 0.4898252
#> Onset 0.5294033
#> Age 0.2989933
#> Previous 0.7136713
#> Tampascale 0.1555227
#> JobControl 0.5565327
#> JobDemand 0.1341280
#> factor(Expect_cat) 0.6103930
pool_coxr$predictors_in
#> Duration Radiation Onset Function Age Previous Tampascale JobControl
#> Step 1 0 0 0 1 0 0 0 0
#> Step 2 0 0 0 0 0 0 0 0
#> Step 3 1 0 0 0 0 0 0 0
#> Included 1 0 0 1 0 0 0 0
#> JobDemand Social factor(Expect_cat)
#> Step 1 0 0 0
#> Step 2 0 1 0
#> Step 3 0 0 0
#> Included 0 1 0
Back to Examples
Pooling Cox regression models over 5 imputed datasets with backward selection using a p-value of 0.05 and as method D1 including interaction terms with a categorical predictor and forcing the predictor Tampascale in the models during backward selection.
library(psfmi)
pool_coxr <- psfmi_coxr(data=lbpmicox, nimp=5, impvar="Impnr",
formula = Surv(Time, Status) ~ Duration + Radiation + Onset +
Function + Age + Previous + Tampascale + factor(Expect_cat) +
factor(Satisfaction) + Tampascale:Radiation +
factor(Expect_cat):Tampascale, keep.predictors = "Tampascale",
p.crit=0.05, method="D1", direction = "FW")
#> Entered at Step 1 is - Function
#> Entered at Step 2 is - Duration
#>
#> Selection correctly terminated,
#> No new variables entered the model
pool_coxr$RR_model_final
#> $`Final model`
#> term estimate std.error statistic df p.value HR
#> 1 Duration -0.008309329 0.003753484 -2.213765 187.9452 0.028047868 0.9917251
#> 2 Tampascale -0.016998788 0.013360456 -1.272321 177.6436 0.204921997 0.9831449
#> 3 Function 0.050217190 0.016427330 3.056930 187.0360 0.002563622 1.0514994
#> lower.EXP upper.EXP
#> 1 0.9844091 0.9990955
#> 2 0.9575624 1.0094108
#> 3 1.0179701 1.0861332
pool_coxr$multiparm_final
#> $`Step 1 - selected - Duration`
#> p-value D1
#> Duration 0.02684499
#> Radiation 0.49765169
#> Onset 0.47699469
#> Age 0.18893166
#> Previous 0.46140973
#> factor(Expect_cat) 0.57323599
#> factor(Satisfaction) 0.78635590
#> Radiation*Tampascale 0.23337740
#> Tampascale*factor(Expect_cat) 0.34684004
pool_coxr$predictors_in
#> Duration Radiation Onset Function Age Previous Tampascale
#> Step 1 0 0 0 1 0 0 1
#> Step 2 1 0 0 0 0 0 1
#> Included 1 0 0 1 0 0 1
#> factor(Expect_cat) factor(Satisfaction) Radiation*Tampascale
#> Step 1 0 0 0
#> Step 2 0 0 0
#> Included 0 0 0
#> Tampascale*factor(Expect_cat)
#> Step 1 0
#> Step 2 0
#> Included 0
Back to Examples
Pooling Cox regression models over 5 imputed datasets with backward selection using a p-value of 0.05 and as method D1 including a restricted cubic spline predictor and forcing Tampascale in the models during backward selection.
library(psfmi)
pool_coxr <- psfmi_coxr(data=lbpmicox, nimp=5, impvar="Impnr",
formula = Surv(Time, Status) ~ Duration + Radiation + Onset +
Function + Previous + rcs(Tampascale, 3) +
factor(Satisfaction) + rcs(Tampascale, 3):Radiation,
keep.predictors = "Tampascale",
p.crit=0.05, method="D1", direction = "BW")
#> Removed at Step 1 is - factor(Satisfaction)
#> Removed at Step 2 is - Radiation*rcs(Tampascale,3)
#> Removed at Step 3 is - Onset
#> Removed at Step 4 is - Radiation
#> Removed at Step 5 is - Previous
#>
#> Selection correctly terminated,
#> No more variables removed from the model
pool_coxr$RR_model_final
#> $`Step 6`
#> term estimate std.error statistic df
#> 1 Duration -0.00834864 0.00375033 -2.226108 186.9008
#> 2 Function 0.05529708 0.01668254 3.314668 184.6679
#> 3 rcs(Tampascale, 3)Tampascale -0.06563800 0.02724068 -2.409558 129.2769
#> 4 rcs(Tampascale, 3)Tampascale' 0.05942661 0.02982168 1.992732 106.0096
#> p.value HR lower.EXP upper.EXP
#> 1 0.027201742 0.9916861 0.9843763 0.9990502
#> 2 0.001104361 1.0568545 1.0226366 1.0922174
#> 3 0.017380618 0.9364698 0.8873345 0.9883259
#> 4 0.048860903 1.0612279 1.0003023 1.1258642
pool_coxr$multiparm_final
#> $`Step 6`
#> p-values D1 F-statistic
#> Duration 0.0260069717 4.955557
#> Function 0.0009181754 10.987023
#> rcs(Tampascale,3) 0.0522892728 2.971050
pool_coxr$predictors_in
#> # A tibble: 3 × 1
#> value
#> <chr>
#> 1 Duration
#> 2 Function
#> 3 rcs(Tampascale,3)
Back to Examples
Pooling Cox regression models over 5 imputed datasets with forward selection using a p-value of 0.05 and as method MPR including a restricted cubic spline predictor and forcing Tampascale in the models during forward selection.
library(psfmi)
pool_coxr <- psfmi_coxr(data=lbpmicox, nimp=5, impvar="Impnr",
formula = Surv(Time, Status) ~ Duration + Radiation + Onset +
Function + Previous + rcs(Tampascale, 3) +
factor(Satisfaction) + rcs(Tampascale, 3):Radiation,
keep.predictors = "Tampascale",
p.crit=0.05, method="MPR", direction = "FW")
#> Entered at Step 1 is - Function
#> Entered at Step 2 is - Duration
#>
#> Selection correctly terminated,
#> No new variables entered the model
pool_coxr$RR_model_final
#> $`Final model`
#> term estimate std.error statistic df
#> 1 Duration -0.00834864 0.00375033 -2.226108 186.9008
#> 2 rcs(Tampascale, 3)Tampascale -0.06563800 0.02724068 -2.409558 129.2769
#> 3 rcs(Tampascale, 3)Tampascale' 0.05942661 0.02982168 1.992732 106.0096
#> 4 Function 0.05529708 0.01668254 3.314668 184.6679
#> p.value HR lower.EXP upper.EXP
#> 1 0.027201742 0.9916861 0.9843763 0.9990502
#> 2 0.017380618 0.9364698 0.8873345 0.9883259
#> 3 0.048860903 1.0612279 1.0003023 1.1258642
#> 4 0.001104361 1.0568545 1.0226366 1.0922174
pool_coxr$multiparm_final
#> $`Step 1 - selected - Duration`
#> P-value
#> Duration 0.02280326
#> Radiation 0.46220293
#> Onset 0.41857220
#> Previous 0.64851606
#> factor(Satisfaction) 0.58075823
#> Radiation*rcs(Tampascale,3) 0.75488109
pool_coxr$predictors_in
#> Duration Radiation Onset Function Previous factor(Satisfaction)
#> Step 1 0 0 0 1 0 0
#> Step 2 1 0 0 0 0 0
#> Included 1 0 0 1 0 0
#> rcs(Tampascale,3) Radiation*rcs(Tampascale,3)
#> Step 1 1 0
#> Step 2 1 0
#> Included 1 0
Back to Examples
Pooling Cox regression models over 5 imputed datasets with backward selection using a p-value of 0.05 and as method MPR for a stratified Cox model.
library(psfmi)
pool_coxr <- psfmi_coxr(data=lbpmicox, nimp=5, impvar="Impnr",
formula = Surv(Time, Status) ~ Duration + Onset +
Function + Previous + rcs(Tampascale, 3) +
factor(Satisfaction) + strata(Radiation),
p.crit=0.05, method="MPR", direction = "BW")
#> Removed at Step 1 is - factor(Satisfaction)
#> Removed at Step 2 is - Onset
#> Removed at Step 3 is - Previous
#>
#> Selection correctly terminated,
#> No more variables removed from the model
pool_coxr$RR_model_final
#> $`Step 4`
#> term estimate std.error statistic df
#> 1 Duration -0.008484749 0.003738762 -2.269401 186.85272
#> 2 Function 0.055437188 0.017461177 3.174883 184.30915
#> 3 rcs(Tampascale, 3)Tampascale -0.064744168 0.027417178 -2.361445 124.61432
#> 4 rcs(Tampascale, 3)Tampascale' 0.061363612 0.030289959 2.025873 97.02152
#> p.value HR lower.EXP upper.EXP
#> 1 0.024386480 0.9915511 0.9842648 0.9988915
#> 2 0.001757088 1.0570026 1.0212095 1.0940503
#> 3 0.019754160 0.9373072 0.8878009 0.9895742
#> 4 0.045523544 1.0632855 1.0012474 1.1291675
pool_coxr$multiparm_final
#> $`Step 4`
#> p-value MPR
#> Duration 0.024176044
#> Function 0.001305273
#> rcs(Tampascale,3) 0.037329200
pool_coxr$formula_step
#> $`Step 1 - removal - factor(Satisfaction)`
#> Surv(Time, Status) ~ Duration + Onset + Function + Previous +
#> factor(Satisfaction) + rcs(Tampascale, 3) + strata(Radiation)
#> <environment: 0x00000182fa18a788>
#>
#> $`Step 2 - removal - Onset`
#> Surv(Time, Status) ~ Duration + Onset + Function + Previous +
#> rcs(Tampascale, 3) + strata(Radiation)
#> <environment: 0x00000182fa18a788>
#>
#> $`Step 3 - removal - Previous`
#> Surv(Time, Status) ~ Duration + Function + Previous + rcs(Tampascale,
#> 3) + strata(Radiation)
#> <environment: 0x00000182fa18a788>
#>
#> $`Step 4 - removal - ended`
#> Surv(Time, Status) ~ Duration + Function + rcs(Tampascale, 3) +
#> strata(Radiation)
#> <environment: 0x00000182fa18a788>
Back to Examples
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.