The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Function optimizes Extraction windows for DIA/SWATH so we have the same number of precursor per window. This optimization is based on spectral library data or non redundant .blib files (Bibliospec).
data("masses")
cdsw <- Cdsw(masses , nbins = 25, digits = 1)
cdsw$plot()
knitr::kable(cdsw$asTable())
from | to | mid | width | counts |
---|---|---|---|---|
349.63 | 384.62 | 367.125 | 34.99 | 6688 |
383.62 | 418.62 | 401.120 | 35.00 | 8357 |
417.62 | 452.61 | 435.115 | 34.99 | 9661 |
451.61 | 486.61 | 469.110 | 35.00 | 10452 |
485.61 | 520.60 | 503.105 | 34.99 | 10725 |
519.60 | 554.59 | 537.095 | 34.99 | 10837 |
553.59 | 588.59 | 571.090 | 35.00 | 10433 |
587.59 | 622.58 | 605.085 | 34.99 | 9750 |
621.58 | 656.58 | 639.080 | 35.00 | 9276 |
655.58 | 690.57 | 673.075 | 34.99 | 8406 |
689.57 | 724.56 | 707.065 | 34.99 | 7848 |
723.56 | 758.56 | 741.060 | 35.00 | 7116 |
757.56 | 792.55 | 775.055 | 34.99 | 6355 |
791.55 | 826.55 | 809.050 | 35.00 | 5666 |
825.55 | 860.54 | 843.045 | 34.99 | 4923 |
859.54 | 894.53 | 877.035 | 34.99 | 4359 |
893.53 | 928.53 | 911.030 | 35.00 | 3807 |
927.53 | 962.52 | 945.025 | 34.99 | 3344 |
961.52 | 996.52 | 979.020 | 35.00 | 2724 |
995.52 | 1030.51 | 1013.015 | 34.99 | 2357 |
1029.51 | 1064.50 | 1047.005 | 34.99 | 2042 |
1063.50 | 1098.50 | 1081.000 | 35.00 | 1807 |
1097.50 | 1132.49 | 1114.995 | 34.99 | 1313 |
1131.49 | 1166.49 | 1148.990 | 35.00 | 1088 |
1165.49 | 1200.48 | 1182.985 | 34.99 | 881 |
constError <- cdsw$error()
quantile
Same number of MS1 precursors in each window
cdsw$quantile_breaks()
cdsw$plot()
knitr::kable(cdsw$asTable())
from | to | mid | width | counts | |
---|---|---|---|---|---|
0% | 349.63 | 381.03 | 365.330 | 31.40 | 5956 |
4% | 380.03 | 406.71 | 393.370 | 26.68 | 6131 |
8% | 405.71 | 429.24 | 417.475 | 23.53 | 6070 |
12% | 428.24 | 450.05 | 439.145 | 21.81 | 6086 |
16% | 449.05 | 470.06 | 459.555 | 21.01 | 6095 |
20% | 469.06 | 488.80 | 478.930 | 19.74 | 6107 |
24% | 487.80 | 508.12 | 497.960 | 20.32 | 6173 |
28% | 507.12 | 526.81 | 516.965 | 19.69 | 6150 |
32% | 525.81 | 545.79 | 535.800 | 19.98 | 6166 |
36% | 544.79 | 565.29 | 555.040 | 20.50 | 6123 |
40% | 564.29 | 584.80 | 574.545 | 20.51 | 6139 |
44% | 583.80 | 605.12 | 594.460 | 21.32 | 6121 |
48% | 604.12 | 626.34 | 615.230 | 22.22 | 6113 |
52% | 625.34 | 648.36 | 636.850 | 23.02 | 6108 |
56% | 647.36 | 672.34 | 659.850 | 24.98 | 6074 |
60% | 671.34 | 696.53 | 683.935 | 25.19 | 6082 |
64% | 695.53 | 722.89 | 709.210 | 27.36 | 6054 |
68% | 721.89 | 751.40 | 736.645 | 29.51 | 6053 |
72% | 750.40 | 782.43 | 766.415 | 32.03 | 6023 |
76% | 781.43 | 817.40 | 799.415 | 35.97 | 5982 |
80% | 816.40 | 857.96 | 837.180 | 41.56 | 6026 |
84% | 856.96 | 905.62 | 881.290 | 48.66 | 5971 |
88% | 904.62 | 964.93 | 934.775 | 60.31 | 5943 |
92% | 963.93 | 1049.48 | 1006.705 | 85.55 | 5903 |
96% | 1048.48 | 1200.48 | 1124.480 | 152.00 | 5863 |
quantileError <- cdsw$error()
Using this method the window start and end is shifted to a mass range with as few MS1 peaks as possible.
knitr::kable(cdsw$optimizeWindows(maxbin = 10, plot = TRUE) )
from | to | mid | width | counts |
---|---|---|---|---|
350.13 | 380.95 | 365.54 | 30.82 | 5952 |
380.45 | 406.35 | 393.40 | 25.90 | 5932 |
406.05 | 429.05 | 417.55 | 23.00 | 5948 |
428.65 | 449.65 | 439.15 | 21.00 | 5891 |
449.45 | 469.65 | 459.55 | 20.20 | 5872 |
469.45 | 488.35 | 478.90 | 18.90 | 5860 |
488.15 | 508.05 | 498.10 | 19.90 | 6137 |
507.45 | 526.45 | 516.95 | 19.00 | 5892 |
526.15 | 545.45 | 535.80 | 19.30 | 6022 |
545.15 | 565.05 | 555.10 | 19.90 | 5992 |
564.55 | 584.45 | 574.50 | 19.90 | 5976 |
584.15 | 605.05 | 594.60 | 20.90 | 6035 |
604.55 | 626.05 | 615.30 | 21.50 | 5893 |
625.55 | 648.15 | 636.85 | 22.60 | 5987 |
647.55 | 672.15 | 659.85 | 24.60 | 6023 |
671.75 | 696.15 | 683.95 | 24.40 | 5890 |
695.55 | 722.55 | 709.05 | 27.00 | 5981 |
722.25 | 751.15 | 736.70 | 28.90 | 5932 |
750.65 | 782.15 | 766.40 | 31.50 | 5927 |
781.65 | 817.15 | 799.40 | 35.50 | 5944 |
816.65 | 857.55 | 837.10 | 40.90 | 5901 |
857.35 | 905.25 | 881.30 | 47.90 | 5904 |
905.05 | 964.65 | 934.85 | 59.60 | 5881 |
964.35 | 1049.15 | 1006.75 | 84.80 | 5864 |
1048.95 | 1200.05 | 1124.50 | 151.10 | 5843 |
cdsw$sampling_breaks(maxwindow = 100,plot = TRUE)
cdsw$plot()
knitr::kable(cdsw$asTable())
from | to | mid | width | counts | |
---|---|---|---|---|---|
0% | 349.63 | 381.71 | 365.670 | 32.08 | 6113 |
4% | 380.71 | 408.41 | 394.560 | 27.70 | 6371 |
8% | 407.41 | 432.26 | 419.835 | 24.85 | 6578 |
12% | 431.26 | 454.93 | 443.095 | 23.67 | 6622 |
16% | 453.93 | 476.38 | 465.155 | 22.45 | 6625 |
20% | 475.38 | 497.11 | 486.245 | 21.73 | 6678 |
24% | 496.11 | 518.13 | 507.120 | 22.02 | 6763 |
28% | 517.13 | 538.79 | 527.960 | 21.66 | 6730 |
32% | 537.79 | 560.07 | 548.930 | 22.28 | 6771 |
36% | 559.07 | 581.30 | 570.185 | 22.23 | 6691 |
40% | 580.30 | 603.26 | 591.780 | 22.96 | 6621 |
44% | 602.26 | 626.18 | 614.220 | 23.92 | 6603 |
48% | 625.18 | 649.87 | 637.525 | 24.69 | 6572 |
52% | 648.87 | 675.24 | 662.055 | 26.37 | 6430 |
56% | 674.24 | 701.24 | 687.740 | 27.00 | 6402 |
60% | 700.24 | 728.90 | 714.570 | 28.66 | 6322 |
64% | 727.90 | 758.92 | 743.410 | 31.02 | 6244 |
68% | 757.92 | 791.39 | 774.655 | 33.47 | 6093 |
72% | 790.39 | 826.91 | 808.650 | 36.52 | 5891 |
76% | 825.91 | 866.98 | 846.445 | 41.07 | 5730 |
80% | 865.98 | 912.46 | 889.220 | 46.48 | 5469 |
84% | 911.46 | 963.54 | 937.500 | 52.08 | 5119 |
88% | 962.54 | 1026.85 | 994.695 | 64.31 | 4672 |
92% | 1025.85 | 1101.01 | 1063.430 | 75.16 | 4134 |
96% | 1100.01 | 1200.48 | 1150.245 | 100.47 | 3118 |
knitr::kable(cdsw$optimizeWindows(maxbin = 10, plot = TRUE) )
from | to | mid | width | counts |
---|---|---|---|---|
350.13 | 381.35 | 365.74 | 31.22 | 6053 |
381.05 | 408.05 | 394.55 | 27.00 | 6191 |
407.65 | 432.05 | 419.85 | 24.40 | 6448 |
431.65 | 454.45 | 443.05 | 22.80 | 6448 |
454.35 | 476.05 | 465.20 | 21.70 | 6389 |
475.85 | 496.85 | 486.35 | 21.00 | 6526 |
496.45 | 517.85 | 507.15 | 21.40 | 6587 |
517.45 | 538.45 | 527.95 | 21.00 | 6492 |
538.15 | 560.05 | 549.10 | 21.90 | 6688 |
559.55 | 581.05 | 570.30 | 21.50 | 6482 |
580.55 | 603.05 | 591.80 | 22.50 | 6526 |
602.55 | 626.05 | 614.30 | 23.50 | 6452 |
625.55 | 649.45 | 637.50 | 23.90 | 6335 |
649.25 | 675.15 | 662.20 | 25.90 | 6392 |
674.55 | 701.15 | 687.85 | 26.60 | 6293 |
700.55 | 728.55 | 714.55 | 28.00 | 6160 |
728.25 | 758.55 | 743.40 | 30.30 | 6119 |
758.25 | 791.25 | 774.75 | 33.00 | 6038 |
790.65 | 826.55 | 808.60 | 35.90 | 5815 |
826.25 | 866.55 | 846.40 | 40.30 | 5622 |
866.35 | 912.05 | 889.20 | 45.70 | 5408 |
911.85 | 963.15 | 937.50 | 51.30 | 5055 |
962.75 | 1026.35 | 994.55 | 63.60 | 4631 |
1026.25 | 1100.65 | 1063.45 | 74.40 | 4105 |
1100.45 | 1200.05 | 1150.25 | 99.60 | 3091 |
mixedError <- cdsw$error()
We compare the optimal number of MS1 peaks per SWATH window (same in each window) with the numbers obtained by using all of the 3 methods implemented.
barplot(c(const = constError$score1, quantile = quantileError$score1, mixed = mixedError$score1),ylab = "Manhattan distance")
barplot(c(const = constError$score2, quantile = quantileError$score2, mixed = mixedError$score2),ylab = "Euclidean distance")
We can see that Method 3 has a relatively small error although it is able to fulfill constraints such as maximum window size.
## R version 4.1.1 (2021-08-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19044)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=C
## [2] LC_CTYPE=English_United States.1252
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] dplyr_1.0.7 Matrix_1.3-4 prozor_0.3.1
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.7 highr_0.9 bslib_0.3.1
## [4] compiler_4.1.1 pillar_1.6.4 jquerylib_0.1.4
## [7] tools_4.1.1 bit_4.0.4 digest_0.6.28
## [10] docopt_0.7.1 jsonlite_1.7.2 evaluate_0.14
## [13] lifecycle_1.0.1 tibble_3.1.4 lattice_0.20-44
## [16] AhoCorasickTrie_0.1.2 pkgconfig_2.0.3 rlang_0.4.11
## [19] DBI_1.1.1 cli_3.1.0 parallel_4.1.1
## [22] yaml_2.2.1 xfun_0.26 fastmap_1.1.0
## [25] stringr_1.4.0 knitr_1.36 generics_0.1.1
## [28] sass_0.4.0 vctrs_0.3.8 hms_1.1.1
## [31] tidyselect_1.1.1 bit64_4.0.5 ade4_1.7-18
## [34] grid_4.1.1 glue_1.4.2 R6_2.5.1
## [37] fansi_0.5.0 vroom_1.5.6 rmarkdown_2.11
## [40] tzdb_0.1.2 purrr_0.3.4 readr_2.0.1
## [43] seqinr_4.2-8 magrittr_2.0.1 htmltools_0.5.2
## [46] ellipsis_0.3.2 MASS_7.3-54 assertthat_0.2.1
## [49] utf8_1.2.2 stringi_1.7.4 crayon_1.4.2
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.