The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Before you can reshape or analyze your conjoint survey data, you
first need to import it into R. In
projoint, use the read_Qualtrics()
function to quickly read properly formatted Qualtrics files.
When exporting from Qualtrics:
⚡ If you skip selecting “Use choice text,” your conjoint data may fail to load properly!
read_Qualtrics()
Or, if using an example bundled with projoint:
## # A tibble: 518 Ă— 218
## StartDate EndDate Status Progress
## <dttm> <dttm> <chr> <dbl>
## 1 2022-03-01 10:44:18 2022-03-01 10:44:43 IP Address 100
## 2 2022-03-01 10:44:06 2022-03-01 10:47:59 IP Address 100
## 3 2022-03-01 10:45:30 2022-03-01 10:49:03 IP Address 100
## 4 2022-03-01 10:52:18 2022-03-01 10:56:29 IP Address 100
## 5 2022-03-01 10:54:34 2022-03-01 10:57:30 IP Address 100
## 6 2022-03-01 10:56:51 2022-03-01 10:58:06 IP Address 100
## 7 2022-03-01 10:58:09 2022-03-01 11:00:45 IP Address 100
## 8 2022-03-01 11:01:43 2022-03-01 11:01:51 IP Address 100
## 9 2022-03-01 10:58:35 2022-03-01 11:03:44 IP Address 100
## 10 2022-03-01 11:00:14 2022-03-01 11:04:37 IP Address 100
## # ℹ 508 more rows
## # ℹ 214 more variables: `Duration (in seconds)` <dbl>, Finished <lgl>,
## # RecordedDate <dttm>, ResponseId <chr>, DistributionChannel <chr>,
## # UserLanguage <chr>, Q_RecaptchaScore <dbl>, Q1.2 <chr>, Q2.2 <chr>,
## # Q2.3 <chr>, Q2.4 <chr>, Q2.5 <chr>, Q2.6 <chr>, Q2.7 <chr>, Q2.8 <chr>,
## # Q2.9 <chr>, Q3.1 <chr>, Q4.2 <chr>, Q4.3 <chr>, Q4.4 <chr>, Q4.5 <chr>,
## # Q4.6 <chr>, Q4.7 <chr>, Q4.8 <chr>, Q4.9 <chr>, Q5.1 <chr>, Q6.1 <chr>, …
Preparing your data correctly is one of the most important steps in
conjoint analysis. Fortunately, the reshape_projoint()
function in projoint makes this easy.
Outcome naming & order (important)
- List
.outcomesin the order questions were asked.
- If you have a repeated task, its outcome must be the last element.
- For base tasks (all but last), the function reads the digits in each name as the task id (e.g.,
"choice4","Q4","task04"→ task 4).
- The repeated base task is inferred from the first base outcome’s digits. The repeated outcome itself need not contain digits—only its position (last) matters.
- Outcome strings should end with your choice labels; by default we parse the last character and expect
"A"/"B". If your survey uses"1"/"2"(or other endings), set.choice_labelsaccordingly.
outcomes <- paste0("choice", 1:8)
outcomes1 <- c(outcomes, "choice1_repeated_flipped")
out1 <- reshape_projoint(
.dataframe = exampleData1,
.outcomes = outcomes1,
.choice_labels = c("A", "B"),
.alphabet = "K",
.idvar = "ResponseId",
.repeated = TRUE,
.flipped = TRUE
)Key Arguments:
.outcomes: Outcome columns (include repeated task
last).choice_labels: Profile labels (e.g., “A”, “B”).idvar: Respondent ID variable.alphabet: Variable prefix (“K”).repeated, .flipped: If repeated task
exists and is flippedNot-Flipped Repeated Task
outcomes <- paste0("choice", 1:8)
outcomes2 <- c(outcomes, "choice1_repeated_notflipped")
out2 <- reshape_projoint(
.dataframe = exampleData2,
.outcomes = outcomes2,
.repeated = TRUE,
.flipped = FALSE
)No Repeated Task
.fill Argument: Should You Use It?
Use .fill = TRUE to “fill” missing values based on IRR
agreement.
fill_FALSE <- reshape_projoint(
.dataframe = exampleData1,
.outcomes = outcomes1,
.fill = FALSE
)
fill_TRUE <- reshape_projoint(
.dataframe = exampleData1,
.outcomes = outcomes1,
.fill = TRUE
)Compare:
selected_vars <- c("id", "task", "profile", "selected", "selected_repeated", "agree")
fill_FALSE$data[selected_vars]## # A tibble: 6,400 Ă— 6
## id task profile selected selected_repeated agree
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 R_00zYHdY1te1Qlrz 1 1 1 1 1
## 2 R_00zYHdY1te1Qlrz 1 2 0 0 1
## 3 R_00zYHdY1te1Qlrz 2 1 1 NA NA
## 4 R_00zYHdY1te1Qlrz 2 2 0 NA NA
## 5 R_00zYHdY1te1Qlrz 3 1 1 NA NA
## 6 R_00zYHdY1te1Qlrz 3 2 0 NA NA
## 7 R_00zYHdY1te1Qlrz 4 1 0 NA NA
## 8 R_00zYHdY1te1Qlrz 4 2 1 NA NA
## 9 R_00zYHdY1te1Qlrz 5 1 1 NA NA
## 10 R_00zYHdY1te1Qlrz 5 2 0 NA NA
## # ℹ 6,390 more rows
## # A tibble: 6,400 Ă— 6
## id task profile selected selected_repeated agree
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 R_00zYHdY1te1Qlrz 1 1 1 1 1
## 2 R_00zYHdY1te1Qlrz 1 2 0 0 1
## 3 R_00zYHdY1te1Qlrz 2 1 1 NA 1
## 4 R_00zYHdY1te1Qlrz 2 2 0 NA 1
## 5 R_00zYHdY1te1Qlrz 3 1 1 NA 1
## 6 R_00zYHdY1te1Qlrz 3 2 0 NA 1
## 7 R_00zYHdY1te1Qlrz 4 1 0 NA 1
## 8 R_00zYHdY1te1Qlrz 4 2 1 NA 1
## 9 R_00zYHdY1te1Qlrz 5 1 1 NA 1
## 10 R_00zYHdY1te1Qlrz 5 2 0 NA 1
## # ℹ 6,390 more rows
Tip:
- Use .fill = TRUE for small-sample or subgroup analysis
(helps increase power).
- Use .fill = FALSE (default) when in doubt for safer
estimates.
If you already have a clean dataset, use
make_projoint_data():
out4 <- make_projoint_data(
.dataframe = exampleData1_labelled_tibble,
.attribute_vars = c(
"School Quality", "Violent Crime Rate (Vs National Rate)",
"Racial Composition", "Housing Cost",
"Presidential Vote (2020)", "Total Daily Driving Time for Commuting and Errands",
"Type of Place"
),
.id_var = "id",
.task_var = "task",
.profile_var = "profile",
.selected_var = "selected",
.selected_repeated_var = "selected_repeated",
.fill = TRUE
)Preview:
## <projoint_data>
## - data: 6400 rows, 13 columns
## - labels: 24 levels, 4 columns
To reorder or relabel attributes:
Edit the CSV (change order, label columns; leave
level_id untouched)
Save it as “labels_arranged.csv” or something else.
Reload labels:
Compare using our example:
🏠Home: Home
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.