The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Type: Package
Title: Predictive Data Analysis System
Version: 4.1.5
Description: Perform a supervised data analysis on a database through a 'shiny' graphical interface. It includes methods such as K-Nearest Neighbors, Decision Trees, ADA Boosting, Extreme Gradient Boosting, Random Forest, Neural Networks, Deep Learning, Support Vector Machines and Bayesian Methods.
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
Imports: DT (≥ 0.27), dplyr (≥ 1.1.0), shiny (≥ 1.7.4), golem (≥ 0.3.5), rlang (≥ 1.0.6), loadeR (≥ 1.0.1), config (≥ 0.3.1), glmnet (≥ 4.1-6), traineR (≥ 2.2.0), shinyjs (≥ 2.1.0), xgboost (≥ 1.7.3.1), shinyAce (≥ 0.4.2), echarts4r (≥ 0.4.4), htmltools (≥ 0.5.4), rpart.plot (≥ 3.1.1), colourpicker (≥ 1.1.1), shinydashboard (≥ 0.7.2), shinycustomloader (≥ 0.9.0), shinydashboardPlus (≥ 2.0.3)
Depends: R (≥ 4.1)
Encoding: UTF-8
URL: https://promidat.website/
BugReports: https://github.com/PROMiDAT/predictoR/issues
RoxygenNote: 7.3.2
Language: en-US
NeedsCompilation: no
Packaged: 2025-05-27 22:50:00 UTC; r583594
Author: Oldemar Rodriguez [aut, cre], Diego Jiménez [ctb, prg], Andrés Navarro [ctb, prg]
Maintainer: Oldemar Rodriguez <oldemar.rodriguez@ucr.ac.cr>
Repository: CRAN
Date/Publication: 2025-05-28 20:30:05 UTC

Predictive Data Analysis System

Description

Perform a supervised data analysis on a database through a 'shiny' graphical interface. It includes methods such as K-Nearest Neighbors, Decision Trees, ADA Boosting, Extreme Gradient Boosting, Random Forest, Neural Networks, Deep Learning, Support Vector Machines and Bayesian Methods.

Details

Package: predictoR
Type: Package
Version: 4.1.2
Date: 2024-11-01
License: GPL (>=2)

Author(s)

Oldemar Rodriguez Rojas
Maintainer: Oldemar Rodriguez Rojas <oldemar.rodriguez@ucr.ac.cr>

See Also

Useful links:


Returns a matrix of contrasts for the train.kknn.

Description

Returns a matrix of contrasts for the train.kknn.

Usage

contr.dummy(n, contrasts = TRUE)

Arguments

n

A vector containing levels of a factor, or the number of levels.

contrasts

A logical value indicating whether contrasts should be computed.

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

contr.dummy(5)


Returns a matrix of contrasts for the train.kknn.

Description

Returns a matrix of contrasts for the train.kknn.

Usage

contr.metric(n, contrasts = TRUE)

Arguments

n

A vector containing levels of a factor, or the number of levels.

contrasts

A logical value indicating whether contrasts should be computed.

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

contr.metric(5)


Returns a matrix of contrasts for the train.kknn.

Description

Returns a matrix of contrasts for the train.kknn.

Usage

contr.ordinal(n, contrasts = TRUE)

Arguments

n

A vector containing levels of a factor, or the number of levels.

contrasts

A logical value indicating whether contrasts should be computed.

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

contr.ordinal(5)


Convierte toda la tabla a código dummy.

Description

Convierte toda la tabla a código dummy.

Usage

data.frame.dummy(DF, exclude = NULL)

Arguments

DF

a data.frame.

exclude

variables of data.frame exclude of conversion.

Author(s)

Diego Jimenez <diego.jimenezs@promidat.com>

Examples

data.frame.dummy(iris)


Eval character vectors to JS code

Description

Eval character vectors to JS code

Usage

e_JS(...)

Arguments

...

character vectors to evaluate

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

e_JS('5 * 3')


Error Evolution

Description

Error Evolution

Usage

e_ada_evol_error(modelo, datos, label = "Iterations")

Arguments

modelo

a adabag model.

datos

a data.frame object.

label

a label plot.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

model <- traineR::train.adabag(Species~., iris, mfinal = 20, coeflearn = 'Freund')
e_ada_evol_error(model, iris)


Var importance Random Forest

Description

Var importance Random Forest

Usage

e_boost_importance(modelo)

Arguments

modelo

a adabag model.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

model <- traineR::train.adabag(Species~., iris, mfinal = 20, coeflearn = 'Freund')
e_boost_importance(model)


Coefficients and lambda

Description

Plot the coefficients and selected lambda of a glmnet model.

Usage

e_coeff_lambda(model, cat, sel.lambda = NULL, label = "Log Lambda")

Arguments

model

a glmnet model.

cat

a category of the variable to be predicted.

sel.lambda

the selected lambda.

label

a character specifying the title to use on selected lambda tooltip.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

x <- model.matrix(Species ~ ., iris)[, -1]
y <- iris$Species
modelo <- glmnet::cv.glmnet(x, y, standardize = TRUE, alpha = 1, family = "multinomial")
e_coeff_lambda(modelo, 'setosa', log(modelo$lambda[1]))


Gauge Plot

Description

Gauge Plot

Usage

e_global_gauge(
  value = 100,
  label = "Label",
  color1 = "#B5E391",
  color2 = "#90C468"
)

Arguments

value

a number specifying the value of the graph.

label

a character specifying the title to use on legend.

color1

a color for the gauge.

color2

a shadowColor for the gauge.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

e_global_gauge(87, "Global Precision")


Possible lambda

Description

Possible lambda

Usage

e_posib_lambda(
  cv.glm,
  labels = c("Valor Superior", "Valor Inferior", "lambda")
)

Arguments

cv.glm

a cv.glmnet model.

labels

a character vector of length 3 specifying the titles to use on legend.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

x         <- model.matrix(Species~., iris)[, -1]
y         <- iris[,'Species']
cv.glm    <- glmnet::cv.glmnet(x, y, standardize = TRUE, alpha = 1, family = 'multinomial')
e_posib_lambda(cv.glm)


Error Evolution

Description

Error Evolution

Usage

e_rf_error(model, label = "Trees")

Arguments

model

a random forest model.

label

a label plot.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

model <- traineR::train.randomForest(Species~., iris, mtry = 2, ntree = 20)
label <- "Trees"
e_rf_error(model, label)



Var importance Random Forest

Description

Var importance Random Forest

Usage

e_rndf_importance(modelo, error = "MeanDecreaseAccuracy")

Arguments

modelo

a random forest model.

error

a character specifying the type of importance.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

model <- traineR::train.randomForest(Species~., iris, mtry = 2, ntree = 20)
e_rndf_importance(model)


Var importance XGBoosting

Description

Var importance XGBoosting

Usage

e_xgb_importance(modelo, error = "Gain")

Arguments

modelo

a random forest model.

error

a character specifying the type of importance.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

model <- traineR::train.xgboost(Species ~ ., data = iris, nrounds = 20)
e_xgb_importance(model)


Run the Shiny Application

Description

Run the Shiny Application

Usage

run_app(...)

Arguments

...

A series of options to be used inside the app.


Voronoi Plot SVM

Description

Voronoi Plot SVM

Usage

voronoi_svm_plot(datos, varpred, vars, kernel = "linear")

Arguments

datos

a data.frame object.

varpred

variable to predict.

vars

predictor variables.

kernel

the kernel used in training and predicting.

Value

plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

voronoi_svm_plot(iris, "Species", c("Sepal.Length", "Sepal.Width"), "linear")

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.