The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Clustering is unsupervised and exploratory in nature. Yet, it can be performed through penalized regression with grouping pursuit. In this package, we provide two algorithms for fitting the penalized regression-based clustering (PRclust) with non-convex grouping penalties, such as group truncated lasso, MCP and SCAD. One algorithm is based on quadratic penalty and difference convex method. Another algorithm is based on difference convex and ADMM, called DC-ADD, which is more efficient. Generalized cross validation and stability based method were provided to select the tuning parameters. Rand index, adjusted Rand index and Jaccard index were provided to estimate the agreement between estimated cluster memberships and the truth.
Version: | 1.3 |
Depends: | R (≥ 3.1.1) |
Imports: | Rcpp (≥ 0.12.1), parallel |
LinkingTo: | Rcpp |
Published: | 2016-12-13 |
DOI: | 10.32614/CRAN.package.prclust |
Author: | Chong Wu, Wei Pan |
Maintainer: | Chong Wu <wuxx0845 at umn.edu> |
License: | GPL-2 | GPL-3 |
NeedsCompilation: | yes |
CRAN checks: | prclust results |
Reference manual: | prclust.pdf |
Package source: | prclust_1.3.tar.gz |
Windows binaries: | r-devel: prclust_1.3.zip, r-release: prclust_1.3.zip, r-oldrel: prclust_1.3.zip |
macOS binaries: | r-release (arm64): prclust_1.3.tgz, r-oldrel (arm64): prclust_1.3.tgz, r-release (x86_64): prclust_1.3.tgz, r-oldrel (x86_64): prclust_1.3.tgz |
Old sources: | prclust archive |
Reverse suggests: | FCPS |
Please use the canonical form https://CRAN.R-project.org/package=prclust to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.