The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Stochastic block model used for dynamic graphs represented by Poisson processes. To model recurrent interaction events in continuous time, an extension of the stochastic block model is proposed where every individual belongs to a latent group and interactions between two individuals follow a conditional inhomogeneous Poisson process with intensity driven by the individuals’ latent groups. The model is shown to be identifiable and its estimation is based on a semiparametric variational expectation-maximization algorithm. Two versions of the method are developed, using either a nonparametric histogram approach (with an adaptive choice of the partition size) or kernel intensity estimators. The number of latent groups can be selected by an integrated classification likelihood criterion. Y. Baraud and L. Birgé (2009). <doi:10.1007/s00440-007-0126-6>. C. Biernacki, G. Celeux and G. Govaert (2000). <doi:10.1109/34.865189>. M. Corneli, P. Latouche and F. Rossi (2016). <doi:10.1016/j.neucom.2016.02.031>. J.-J. Daudin, F. Picard and S. Robin (2008). <doi:10.1007/s11222-007-9046-7>. A. P. Dempster, N. M. Laird and D. B. Rubin (1977). <http://www.jstor.org/stable/2984875>. G. Grégoire (1993). <http://www.jstor.org/stable/4616289>. L. Hubert and P. Arabie (1985). <doi:10.1007/BF01908075>. M. Jordan, Z. Ghahramani, T. Jaakkola and L. Saul (1999). <doi:10.1023/A:1007665907178>. C. Matias, T. Rebafka and F. Villers (2018). <doi:10.1093/biomet/asy016>. C. Matias and S. Robin (2014). <doi:10.1051/proc/201447004>. H. Ramlau-Hansen (1983). <doi:10.1214/aos/1176346152>. P. Reynaud-Bouret (2006). <doi:10.3150/bj/1155735930>.
Version: | 0.2.2 |
Imports: | Rfast, clue, gtools, parallel |
Published: | 2018-03-19 |
DOI: | 10.32614/CRAN.package.ppsbm |
Author: | D. Giorgi, C. Matias, T. Rebafka, F. Villers |
Maintainer: | Daphné Giorgi <daphne.giorgi at sorbonne-universite.fr> |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | https://cran.r-project.org |
NeedsCompilation: | no |
Materials: | README |
CRAN checks: | ppsbm results |
Reference manual: | ppsbm.pdf |
Package source: | ppsbm_0.2.2.tar.gz |
Windows binaries: | r-devel: ppsbm_0.2.2.zip, r-release: ppsbm_0.2.2.zip, r-oldrel: ppsbm_0.2.2.zip |
macOS binaries: | r-release (arm64): ppsbm_0.2.2.tgz, r-oldrel (arm64): ppsbm_0.2.2.tgz, r-release (x86_64): ppsbm_0.2.2.tgz, r-oldrel (x86_64): ppsbm_0.2.2.tgz |
Please use the canonical form https://CRAN.R-project.org/package=ppsbm to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.