The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

A quick tour of ppgmmga

Alessio Serafini, Luca Scrucca

17 Nov 2023

Introduction

An R package implementing a Projection Pursuit algorithm based on finite Gaussian Mixtures Models for density estimation using Genetic Algorithms (PPGMMGA) to maximise a Negentropy index. The PPGMMGA algorithm provides a method to visualise high-dimensional data in a lower-dimensional space, with special reference to reveal clustering structures.

library(ppgmmga)
##    ___  ___  ___ ___ _  __ _  ___ ____ _
##   / _ \/ _ \/ _ `/  ' \/  ' \/ _ `/ _ `/
##  / .__/ .__/\_, /_/_/_/_/_/_/\_, /\_,_/ 
## /_/  /_/   /___/            /___/       version 1.3

Banknote data

library(mclust)
data("banknote")
X <- banknote[,-1]
Class <- banknote$Status
table(Class)
## Class
## counterfeit     genuine 
##         100         100
clPairs(X, classification = Class, 
        symbols = ppgmmga.options("classPlotSymbols"),
        colors = ppgmmga.options("classPlotColors"))

1-dimensional PPGMMGA

PP1D <- ppgmmga(data = X, d = 1, seed = 1)
PP1D
## Call:
## ppgmmga(data = X, d = 1, seed = 1)
## 
## 'ppgmmga' object containing: 
## [1] "data"       "d"          "approx"     "GMM"        "GA"        
## [6] "Negentropy" "basis"      "Z"
summary(PP1D)
## ── ppgmmga ───────────────────────────── 
## 
## Data dimensions               = 200 x 6 
## Data transformation           = center & scale 
## Projection subspace dimension = 1 
## GMM density estimate          = (VEE,4)
## Negentropy approximation      = UT 
## GA optimal negentropy         = 0.6345935 
## GA encoded basis solution: 
##            x1       x2       x3       x4       x5
## [1,] 3.268902 2.373044 1.051365 0.313128 0.531718
## 
## Estimated projection basis: 
##                 PP1
## Length   -0.0119653
## Left     -0.0934775
## Right     0.1602105
## Bottom    0.5740698
## Top       0.3450346
## Diagonal -0.7189203
## 
## Monte Carlo Negentropy approximation check: 
##                            UT
## Approx Negentropy 0.634593544
## MC Negentropy     0.633614256
## MC se             0.002249545
## Relative accuracy 1.001545559
plot(PP1D)

plot(PP1D, class = Class)

2-dimensional PPGMMGA

PP2D <- ppgmmga(data = X, d = 2, seed = 1)
summary(PP2D)
## ── ppgmmga ───────────────────────────── 
## 
## Data dimensions               = 200 x 6 
## Data transformation           = center & scale 
## Projection subspace dimension = 2 
## GMM density estimate          = (VEE,4)
## Negentropy approximation      = UT 
## GA optimal negentropy         = 1.13624 
## GA encoded basis solution: 
##            x1       x2       x3       x4      x5      x6      x7      x8
## [1,] 2.268667 2.929821 1.061407 1.084929 0.30443 3.85462 0.98329 1.11377
##            x9      x10
## [1,] 0.167174 1.668403
## 
## Estimated projection basis: 
##                 PP1        PP2
## Length   -0.0372687 -0.0718319
## Left      0.0312555 -0.1198116
## Right    -0.1548079  0.0630092
## Bottom   -0.0856931  0.8639049
## Top      -0.1024990  0.4603727
## Diagonal  0.9776601  0.1350576
## 
## Monte Carlo Negentropy approximation check: 
##                            UT
## Approx Negentropy 1.136240194
## MC Negentropy     1.137260367
## MC se             0.003527379
## Relative accuracy 0.999102956
summary(PP2D$GMM)
## ------------------------------------------------------- 
## Density estimation via Gaussian finite mixture modeling 
## ------------------------------------------------------- 
## 
## Mclust VEE (ellipsoidal, equal shape and orientation) model with 4 components: 
## 
##  log-likelihood   n df       BIC       ICL
##       -1191.595 200 51 -2653.405 -2666.898
plot(PP2D$GA)

plot(PP2D)

plot(PP2D, class = Class, drawAxis = FALSE)

3-dimensional PPGMMGA

PP3D <- ppgmmga(data = X, d = 3, 
                center = TRUE, scale = FALSE, 
                gatype = "gaisl", 
                options = ppgmmga.options(numIslands = 2),
                seed = 1)
summary(PP3D)
## ── ppgmmga ───────────────────────────── 
## 
## Data dimensions               = 200 x 6 
## Data transformation           = center 
## Projection subspace dimension = 3 
## GMM density estimate          = (VVE,3)
## Negentropy approximation      = UT 
## GA optimal negentropy         = 1.16915 
## GA encoded basis solution: 
##            x1      x2       x3       x4       x5       x6       x7       x8
## [1,] 4.274545 2.47064 1.055677 1.022896 0.851247 4.924235 1.982288 2.039161
##            x9      x10  ...       x14      x15
## [1,] 1.939208 2.210582       1.548995 2.489197
## 
## Estimated projection basis: 
##                 PP1        PP2        PP3
## Length   -0.3145939  0.5612330 -0.5201907
## Left     -0.1472768 -0.1498109 -0.3297848
## Right     0.3043823  0.5008715 -0.3739875
## Bottom    0.2818318  0.3353769  0.4238383
## Top       0.3062895  0.4589957  0.3562206
## Diagonal -0.7832300  0.2975690  0.4174266
## 
## Monte Carlo Negentropy approximation check: 
##                           UT
## Approx Negentropy 1.16914962
## MC Negentropy     1.17493505
## MC se             0.00430878
## Relative accuracy 0.99507596
plot(PP3D$GA)

plot(PP3D)

plot(PP3D, class = Class)

plot(PP3D, dim = c(1,2))

plot(PP3D, dim = c(1,3), class = Class)

# A rotating 3D plot can be obtained using
if(!require("msir")) install.packages("msir")
msir::spinplot(PP3D$Z, markby = Class, 
               pch.points = c(20,17),
               col.points = ppgmmga.options("classPlotColors")[1:2])


References

Scrucca L, Serafini A (2019). “Projection pursuit based on Gaussian mixtures and evolutionary algorithms.” Journal of Computational and Graphical Statistics, 28(4), 847–860. https://doi.org/10.1080/10618600.2019.1598871.


sessionInfo()
## R version 4.3.0 (2023-04-21)
## Platform: x86_64-apple-darwin20 (64-bit)
## Running under: macOS Ventura 13.6
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.0.dylib 
## LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## time zone: Europe/Rome
## tzcode source: internal
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] mclust_6.0.1 ppgmmga_1.3  knitr_1.44  
## 
## loaded via a namespace (and not attached):
##  [1] gtable_0.3.4      jsonlite_1.8.7    dplyr_1.1.2       compiler_4.3.0   
##  [5] crayon_1.5.2      tidyselect_1.2.0  Rcpp_1.0.11       GA_3.2.3         
##  [9] jquerylib_0.1.4   scales_1.2.1      yaml_2.3.7        fastmap_1.1.1    
## [13] ggplot2_3.4.3     R6_2.5.1          labeling_0.4.3    generics_0.1.3   
## [17] iterators_1.0.14  tibble_3.2.1      munsell_0.5.0     bslib_0.4.2      
## [21] pillar_1.9.0      rlang_1.1.1       utf8_1.2.4        cachem_1.0.8     
## [25] xfun_0.40         sass_0.4.6        cli_3.6.1         withr_2.5.1      
## [29] magrittr_2.0.3    digest_0.6.33     foreach_1.5.2     grid_4.3.0       
## [33] rstudioapi_0.15.0 lifecycle_1.0.3   vctrs_0.6.4       evaluate_0.22    
## [37] glue_1.6.2        farver_2.1.1      codetools_0.2-19  fansi_1.0.5      
## [41] colorspace_2.1-0  rmarkdown_2.22    tools_4.3.0       pkgconfig_2.0.3  
## [45] htmltools_0.5.6

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.