The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Creates a non-negative low-rank approximate factorization of a sparse counts matrix by maximizing Poisson likelihood with L1/L2 regularization (e.g. for implicit-feedback recommender systems or bag-of-words-based topic modeling) (Cortes, (2018) <doi:10.48550/arXiv.1811.01908>), which usually leads to very sparse user and item factors (over 90% zero-valued). Similar to hierarchical Poisson factorization (HPF), but follows an optimization-based approach with regularization instead of a hierarchical prior, and is fit through gradient-based methods instead of variational inference.
Version: | 0.4.0-4 |
Imports: | Matrix (≥ 1.3), methods |
Published: | 2023-03-26 |
DOI: | 10.32614/CRAN.package.poismf |
Author: | David Cortes [aut, cre, cph], Jean-Sebastien Roy [cph] (Copyright holder of included tnc library), Stephen Nash [cph] (Copyright holder of included tnc library) |
Maintainer: | David Cortes <david.cortes.rivera at gmail.com> |
BugReports: | https://github.com/david-cortes/poismf/issues |
License: | BSD_2_clause + file LICENSE |
Copyright: | see file COPYRIGHTS |
URL: | https://github.com/david-cortes/poismf |
NeedsCompilation: | yes |
CRAN checks: | poismf results |
Reference manual: | poismf.pdf |
Package source: | poismf_0.4.0-4.tar.gz |
Windows binaries: | r-devel: poismf_0.4.0-4.zip, r-release: poismf_0.4.0-4.zip, r-oldrel: poismf_0.4.0-4.zip |
macOS binaries: | r-release (arm64): poismf_0.4.0-4.tgz, r-oldrel (arm64): poismf_0.4.0-4.tgz, r-release (x86_64): poismf_0.4.0-4.tgz, r-oldrel (x86_64): poismf_0.4.0-4.tgz |
Old sources: | poismf archive |
Please use the canonical form https://CRAN.R-project.org/package=poismf to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.