The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Timing R Pipelines

Overview

pipetime enables inline timing of R pipelines (|>), helping identify performance bottlenecks and compare different approaches without disrupting your workflow.

We illustrate this with a text processing example, comparing base R string functions against the optimized stringr package for common data cleaning tasks.

Example Data

set.seed(123)
make_str <- function(n) paste(sample(letters, n, TRUE), collapse = "")

text_data <- data.frame(
  id = 1:1e5,
  email = paste0(
    sapply(sample(5:15, 1e5, TRUE), make_str),
    sample(c("@gmail.com", "@yahoo.com", "@hotmail.com"), 1e5, TRUE)
  ),
  phone = paste0(
    "(",
    sample(100:999, 1e5, TRUE),
    ") ",
    sample(100:999, 1e5, TRUE),
    "-",
    sample(1000:9999, 1e5, TRUE)
  ),
  text = sapply(sample(20:100, 1e5, TRUE), make_str)
)
head(text_data, n = 3)
#>   id                      email          phone
#> 1  1        qgxxfbv@hotmail.com (751) 344-7289
#> 2  2          itajkbw@yahoo.com (246) 230-8897
#> 3  3 nlgbhuoikefcml@hotmail.com (918) 284-3213
#>                                 text
#> 1         ebivtrgrqnoawlpnpaanydepmn
#> 2               fsibsapgehcsjmyvjuis
#> 3 qouuphjmkgyttyeaxttydtuuguklfrlwvn

Timing Workflows

We use the log argument so each workflow stores its timings separately.

library(dplyr)
library(pipetime)
options(pipetime.console = FALSE)
# Workflow A: Base R
wf_A <- text_data |>
  mutate(
    domain = sub(".*@", "", email),
    clean_phone = gsub("[^0-9]", "", phone),
    word_count = lengths(strsplit(text, " "))
  ) |>
  time_pipe("extract & clean", log = "base") |>
  filter(grepl("^[a-m]", text)) |>
  time_pipe("filter", log = "base") |>
  mutate(
    text_upper = toupper(text),
    truncated = substr(text, 1, 50)
  ) |>
  time_pipe("transform", log = "base")

# Workflow B: stringr (optimized)
wf_B <- text_data |>
  mutate(
    domain = str_extract(email, "(?<=@).*"),
    clean_phone = str_remove_all(phone, "[^0-9]"),
    word_count = str_count(text, "\\S+")
  ) |>
  time_pipe("extract & clean", log = "stringr") |>
  filter(str_detect(text, "^[a-m]")) |>
  time_pipe("filter", log = "stringr") |>
  mutate(
    text_upper = str_to_upper(text),
    truncated = str_sub(text, 1, 50)
  ) |>
  time_pipe("transform", log = "stringr")

Results

# Collect both logs
logs <- get_log() |>
  bind_rows(.id = "workflow") |>
  group_by(workflow) |>
  # Add a starting point
  group_modify(~ add_row(.x, duration = 0, label = "start", .before = 1)) |>
  mutate(step = factor(row_number()))

library(ggplot2)
logs |>
  ggplot(
    aes(
      x = step,
      y = duration,
      colour = workflow,
      group = workflow
    )
  ) +
  geom_line(linewidth = 1) +
  geom_point(size = 3) +
  geom_text(aes(label = label), vjust = -0.7, size = 3.5, show.legend = FALSE) +
  labs(
    x = "Step",
    y = "Cumulative time (sec)",
    title = "Base R vs stringr",
    colour = "Workflow"
  ) +
  theme_classic()

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.