The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This tutorial demonstrates how to generate Allele Similarity Clusters (ASC) for a BIOMED-style V reference using the OGRDB IGHV reference. You will:
Infer ASC clusters
Merge with PIgLET thresholds
Output ASC-formatted references
Or load precomputed versions
url <- "https://bitbucket.org/yaarilab/piglet/raw/70b7d4491e25e7197e2a94bd890ce5b6e3b506a8/data-raw/HVGERM_OGRDB.fasta"
tmp_dest_file <- file.path(tempdir(), "HVGERM_OGRDB.fasta")
download.file(url, tmp_dest_file, mode = "wb")
ref_ogrdb <- readIgFasta(tmp_dest_file)
ref_ogrdb_frw1 <- piglet::artificialFRW1Germline(ref_ogrdb)asc_frw1 <- inferAlleleClusters(ref_ogrdb_frw1)
allele_table_frw1 <- setDT(asc_frw1@alleleClusterTable)[, .(imgt_allele, new_allele)]
setnames(allele_table_frw1, c("allele", "asc_allele"))allele_table_piglet <- fread("https://bitbucket.org/yaarilab/piglet/raw/70b7d4491e25e7197e2a94bd890ce5b6e3b506a8/data-raw/allele_threshold_table.tsv")
allele_table_frw1$threshold <- 1e-04
allele_table_frw1$threshold <- apply(allele_table_frw1, 1, function(x){
gene <- unlist(strsplit(x[["allele"]],"[*]"))
alleles <- unlist(strsplit(gene[2],"_"))
gene <- gene[1]
alleles <- paste0(gene,"*",alleles)
thresh <- allele_table_piglet[allele %in% alleles, sum(threshold)]
thresh
})
allele_table_frw1 <- rbind(
allele_table_frw1[,.(allele,asc_allele,threshold)],
allele_table_piglet[!grepl("V",allele),]
)
allele_table_frw1[,tag:=substr(allele, 4, 4)]url <- "https://bitbucket.org/yaarilab/piglet/raw/70b7d4491e25e7197e2a94bd890ce5b6e3b506a8/data-raw/HVGERM_ogrdb_asc_partial.fasta"
tmp_dest_file <- file.path(tempdir(), "HVGERM_ogrdb_asc_partial.fasta")
download.file(url, tmp_dest_file, mode = "wb")
asc_germline <- readIgFasta(tmp_dest_file)
allele_table <- fread("https://bitbucket.org/yaarilab/piglet/raw/70b7d4491e25e7197e2a94bd890ce5b6e3b506a8/data-raw/allele_threshold_table_ogrdb_partial.tsv")data <- tigger::AIRRDb
data$v_call_or <- data$v_call
allele_table_split <- allele_table[, {
parts <- strsplit(allele, "\\*")[[1]]
gene <- parts[1]
alleles <- strsplit(parts[2], "_")[[1]]
expanded <- paste0(gene, "*", alleles)
.(allele = expanded, asc_allele, threshold, tag)
}, by = .I]
allele_table_split[, I := NULL]
asc_data <- assignAlleleClusters(data, allele_table_split, v_call = "v_call", from_col = "allele", to_col = "asc_allele")
# using the asc annotations
asc_genotype <- inferGenotypeAllele(
asc_data,
allele_threshold_table = allele_table,
call = "v_call", # change to the column call you want to genotype
asc_annotation = TRUE, # if you use iuis names then set to FALSE
single_assignment = TRUE, # if you want to use the single assignment algorithm
find_unmutated = FALSE # change to TRUE to filter mutated reads
# germline_db = asc_germline # Uncomment if you want to filter mutated reads
)
# using the biomed annotations, make sure to convert the v_call to the collapsed biomed annotations
allele_table_biomed <- allele_table
allele_table_biomed[, asc_allele := allele]
allele_table_split <- allele_table_biomed[, {
parts <- strsplit(allele, "\\*")[[1]]
gene <- parts[1]
alleles <- strsplit(parts[2], "_")[[1]]
expanded <- paste0(gene, "*", alleles)
.(allele = expanded, asc_allele, threshold, tag)
}, by = .I]
allele_table_split[, I := NULL]
biomed_data <- assignAlleleClusters(data, allele_table_split, v_call = "v_call", from_col = "allele", to_col = "asc_allele")
asc_genotype_biomed <- inferGenotypeAllele(
biomed_data,
allele_threshold_table = allele_table,
call = "v_call", # change to the column call you want to genotype
asc_annotation = FALSE, # if you use iuis names then set to FALSE
single_assignment = TRUE
)These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.