The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

pedquant

CRAN status

pedquant (Public Economic Data and QUANTitative analysis) provides an interface to access public economic and financial data for economic research and quantitative analysis. The functions are grouped into three main categories,

The functions in this package are designed to write minimum codes for some common tasks in quantitative analysis process. Since the parameters to get data can be interactively specify, it’s very easy to start. The loaded data have been carefully cleansed and provided in a unified format.

pedquant package has advantages on multiple aspects, such as the format of loaded data is a list of data frames, which can be easily manipulated in data.table or tidyverse packages; high performance on speed by using data.table and TTR; and interactive charts by using echarts4r. Similar works including tidyquant or quantmod.

Installation

install.packages("pedquant")
devtools::install_github("shichenxie/pedquant")

Example

The following examples show you how to import data.

library(pedquant)
packageVersion('pedquant')
#> [1] '0.2.4'
# loading data
## import eocnomic data
dat1 = ed_fred('GDPCA')
#> 1/1 GDPCA
dat2 = ed_nbs(geo_type='nation', freq='quarterly', symbol='A010101')

## import market data
FAAG = md_stock(c('META', 'AMZN', 'AAPL', 'GOOG'), date_range = '10y')
#> 1/4 meta
#> 2/4 amzn
#> 3/4 aapl
#> 4/4 goog
INDX = md_stock(c('^000001','^399001'), date_range = '10y')
#> 1/2 ^000001
#> 2/2 ^399001

# double moving average strategy
## add technical indicators
data("dt_banks")
dtbnkti = pq_addti(dt_banks, x='close_adj', sma=list(n=200), sma=list(n=50))

## crossover signals
library(data.table)
dtorders = copy(dtbnkti[['601988.SH']])[
   sma_50 %x>% sma_200, `:=`(side = 1,  prices = close_adj)
 ][sma_50 %x<% sma_200, `:=`(side = -1, prices = close_adj)
 ][order(date)
 ][, (c('side', 'prices')) := lapply(.SD, shift), .SDcols = c('side', 'prices')
 ][,.(symbol, name, date, side, prices)
 ][!is.na(side)]
head(dtorders)
#>       symbol     name       date side prices
#> 1: 601988.SH 中国银行 2021-04-20    1   5.76
#> 2: 601988.SH 中国银行 2021-08-19   -1   5.67
#> 3: 601988.SH 中国银行 2021-11-18    1   5.70
#> 4: 601988.SH 中国银行 2021-11-25   -1   5.71
#> 5: 601988.SH 中国银行 2022-01-18    1   5.72

# charting
e = pq_plot(setDT(dt_banks)[symbol=='601988.SH'],  y='close_adj', addti = list(sma=list(n=200), sma=list(n=50)), orders = dtorders)
# e[['601988.SS']]

Issues and Contributions

This package still on the developing stage. If you have any issue when using this package, please update to the latest version from github. If the issue still exists, report it at github page. Contributions in any forms to this project are welcome.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.