The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
A method for fitting the entire regularization path of the principal components lasso for linear and logistic regression models. The algorithm uses cyclic coordinate descent in a path-wise fashion. See URL below for more information on the algorithm. See Tay, K., Friedman, J. ,Tibshirani, R., (2014) 'Principal component-guided sparse regression' <doi:10.48550/arXiv.1810.04651>.
Version: | 1.2 |
Imports: | svd |
Suggests: | knitr, rmarkdown |
Published: | 2020-09-03 |
DOI: | 10.32614/CRAN.package.pcLasso |
Author: | Jerome Friedman, Kenneth Tay, Robert Tibshirani |
Maintainer: | Rob Tibshirani <tibs at stanford.edu> |
License: | GPL-3 |
URL: | https://arxiv.org/abs/1810.04651 |
NeedsCompilation: | yes |
Materials: | README |
CRAN checks: | pcLasso results |
Reference manual: | pcLasso.pdf |
Vignettes: |
Introduction to pcLasso |
Package source: | pcLasso_1.2.tar.gz |
Windows binaries: | r-devel: pcLasso_1.2.zip, r-release: pcLasso_1.2.zip, r-oldrel: pcLasso_1.2.zip |
macOS binaries: | r-release (arm64): pcLasso_1.2.tgz, r-oldrel (arm64): pcLasso_1.2.tgz, r-release (x86_64): pcLasso_1.2.tgz, r-oldrel (x86_64): pcLasso_1.2.tgz |
Old sources: | pcLasso archive |
Please use the canonical form https://CRAN.R-project.org/package=pcLasso to link to this page.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.