The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The patternplot package is a tool for creating aesthetically pleasing and informative pie charts, ring charts, bar charts and box plots in R. It can fill pie charts, ring charts, bar charts and box plots with colors or textures or any external images in png or jpeg formats.
Pie charts produced by patternpie().
library(patternplot)
library(png)
library(ggplot2)
data <- read.csv(system.file("extdata", "vegetables.csv", package="patternplot"))
#Example 1
pattern.type<-c('hdashes', 'vdashes', 'bricks')
pie1<-patternpie(group=data$group,pct=data$pct,label=data$label,
label.size=4, label.color='black',label.distance=1.3,pattern.type=pattern.type,
pattern.line.size=c(10, 10, 2), frame.color='black',frame.size=1.5, pixel=12, density=c(8, 8, 10))
pie1<-pie1+ggtitle('(A) Black and White with Patterns')
#Example 2
pattern.color<-c('red3','green3', 'white' )
background.color<-c('dodgerblue', 'lightpink', 'orange')
pie2<-patternpie(group=data$group,pct=data$pct,label=data$label, label.distance=1.3, pattern.type=pattern.type,
pattern.color=pattern.color,background.color=background.color,
pattern.line.size=c(10, 10, 2), frame.color='grey40',frame.size=1.5, pixel=12, density=c(8, 8, 10))
pie2<-pie2+ggtitle('(B) Colors with Patterns')
library(gridExtra)
grid.arrange(pie1,pie2, nrow = 1)
Pie chart produced by imagepie().
library(patternplot)
library(ggplot2)
library(jpeg)
Tomatoes <- readJPEG(system.file("img", "tomatoes.jpg", package="patternplot"))
Peas <- readJPEG(system.file("img", "peas.jpg", package="patternplot"))
Potatoes <- readJPEG(system.file("img", "potatoes.jpg", package="patternplot"))
#Example 1
data <- read.csv(system.file("extdata", "vegetables.csv", package="patternplot"))
pattern.type<-list(Tomatoes,Peas,Potatoes)
imagepie(group=data$group,pct=data$pct,label=data$label,pattern.type=pattern.type,
label.distance=1.3,frame.color='burlywood4', frame.size=0.8, label.size=6,
label.color='forestgreen')+ggtitle('Pie Chart with Images')
Ring chart produced by patternring1().
library(patternplot)
library(png)
library(ggplot2)
group1<-c('New_England', 'Great_Lakes','Plains', 'Rocky_Mountain', 'Far_West','Southwest', 'Southeast', 'Mideast')
pct1<-c( 12, 11, 17, 15, 8, 11, 16, 10)
label1<-paste(group1, " \n ", pct1, "%", sep="")
pattern.type1<-c("hdashes", "blank", "grid", "blank", "hlines", "blank", "waves", "blank")
pattern.type.inner<-"blank"
pattern.color1<-rep("white", 8)
background.color1<-c("darkgreen", "darkcyan", "chocolate", "cadetblue1", "darkorchid", "yellowgreen", "hotpink", "lightslateblue")
density1<-rep(11.5, length(group1))
pattern.line.size1=c(10, 1, 6, 1, 10, 1, 6, 1)
g<-patternring1(group1, pct1, label1, label.size1=4,label.color1='black', label.distance1=1.36, pattern.type1, pattern.color1, pattern.line.size1,background.color1, frame.color='black',frame.size=1.2, density1, pixel=13,
pattern.type.inner="blank",pattern.color.inner="white", pattern.line.size.inner=1, background.color.inner="white", pixel.inner=10, density.inner=1, r1=2.7, r2=4)
g<-g+annotate(geom="text", x=0, y=0, label="2019 Number of Cases \n N=1000",color="black", size=4)+scale_x_continuous(limits=c(-7, 7))+scale_y_continuous(limits=c(-7, 7))
g
Ring chart produced by imagering1().
#Example 1
library(patternplot)
library(png)
library(ggplot2)
location<-gsub('\\','/',tempdir(), fixed=T)
pattern(type="blank", density=1, color='white', pattern.line.size=1, background.color="darkgreen", pixel=8, res=8)
FarWest<-readPNG(paste(location,'/',"blank",".png", sep=''))
pattern(type="blank", density=1, color='white', pattern.line.size=1, background.color="darkcyan", pixel=8, res=8)
GreatLakes<-readPNG(paste(location,'/',"blank",".png", sep=''))
pattern(type="blank", density=1, color='white', pattern.line.size=1, background.color="chocolate", pixel=8, res=8)
Mideast<-readPNG(paste(location,'/',"blank",".png", sep=''))
pattern(type="blank", density=1, color='white', pattern.line.size=1, background.color="cadetblue1", pixel=8, res=8)
NewEngland<-readPNG(paste(location,'/',"blank",".png", sep=''))
pattern(type="blank", density=1, color='white', pattern.line.size=1, background.color="darkorchid", pixel=8, res=8)
Plains<-readPNG(paste(location,'/',"blank",".png", sep=''))
pattern(type="blank", density=1, color='white', pattern.line.size=1, background.color="yellowgreen", pixel=8, res=8)
RockyMountain<-readPNG(paste(location,'/',"blank",".png", sep=''))
pattern(type="blank", density=1, color='white', pattern.line.size=1, background.color="hotpink", pixel=8, res=8)
Southeast<-readPNG(paste(location,'/',"blank",".png", sep=''))
pattern(type="blank", density=1, color='white', pattern.line.size=1, background.color="lightslateblue", pixel=8, res=8)
Southwest <-readPNG(paste(location,'/',"blank",".png", sep=''))
group1<-c('New_England', 'Great_Lakes','Plains', 'Rocky_Mountain', 'Far_West','Southwest', 'Southeast', 'Mideast')
pct1<-c( 12, 11, 17, 15, 8, 11, 16, 10)
label1<-paste(group1, " \n ", pct1, "%", sep="")
pattern.type1<-list(NewEngland, GreatLakes,Plains, RockyMountain, FarWest,Southwest, Southeast, Mideast)
pattern.type.inner<-readPNG(system.file("img", "USmap.png", package="patternplot"))
g<-imagering1(group1, pct1, pattern.type1, pattern.type.inner, frame.color='black',frame.size=1.5, r1=3, r2=4,label1, label.size1=4,label.color1='black', label.distance1=1.3)
g<-g+annotate(geom="text", x=0, y=-2, label="2019 Number of Cases \n N=1000",color="black", size=4)+scale_x_continuous(limits=c(-6, 6))+scale_y_continuous(limits=c(-6, 6))
g
Ring charts produced by patternring2().
library(patternplot)
library(png)
library(ggplot2)
group1<-c("Wind", "Hydro", "Solar", "Coal", "Natural Gas", "Oil")
pct1<-c(12, 15, 8, 22, 18, 25)
label1<-paste(group1, " \n ", pct1 , "%", sep="")
group2<-c("Renewable", "Non-Renewable")
pct2<-c(35, 65)
label2<-paste(group2, " \n ", pct2 , "%", sep="")
pattern.type1<-rep(c( "blank"), times=6)
pattern.type2<-c('grid', 'blank')
pattern.type.inner<-"blank"
pattern.color1<-rep('white', length(group1))
pattern.color2<-rep('white', length(group2))
background.color1<-c("darkolivegreen1", "white", "indianred", "gray81", "white", "sandybrown" )
background.color2<-c("seagreen", "deepskyblue")
density1<-rep(10, length(group1))
density2<-rep(10, length(group2))
pattern.line.size1=rep(5, length(group1))
pattern.line.size2=rep(2, length(group2))
pattern.line.size.inner=1
#Example 1: Two rings
g<-patternrings2(group1, group2, pct1,pct2, label1, label2, label.size1=3, label.size2=3.5, label.color1='black', label.color2='black', label.distance1=0.75, label.distance2=1.4, pattern.type1, pattern.type2, pattern.color1,pattern.color2,
pattern.line.size1, pattern.line.size2, background.color1, background.color2,density1=rep(10, length(group1)), density2=rep(15, length(group2)),pixel=10, pattern.type.inner, pattern.color.inner="black",pattern.line.size.inner, background.color.inner="white", pixel.inner=6, density.inner=5, frame.color='black',frame.size=1.5,r1=2.45, r2=4.25, r3=5)
g1<-g+annotate(geom="text", x=0, y=0, label="Earth's Energy",color="black", size=5)+scale_x_continuous(limits=c(-6, 6))+scale_y_continuous(limits=c(-6, 6))+ggtitle("(A) Two Rings")
#Example 2: Pie in a ring
g<-patternrings2(group1, group2, pct1,pct2, label1, label2, label.size1=3, label.size2=3.5, label.color1='black', label.color2='black', label.distance1=0.7, label.distance2=1.4, pattern.type1, pattern.type2, pattern.color1,pattern.color2,
pattern.line.size1, pattern.line.size2, background.color1, background.color2,density1=rep(10, length(group1)), density2=rep(15, length(group2)),pixel=10, pattern.type.inner, pattern.color.inner="black",pattern.line.size.inner, background.color.inner="white", pixel.inner=2, density.inner=5, frame.color='black',frame.size=1.5, r1=0.005, r2=4, r3=4.75)
g2<-g+scale_x_continuous(limits=c(-6, 6))+scale_y_continuous(limits=c(-6, 6))+ggtitle("(B) Pie in a Ring")
library(gridExtra)
grid.arrange(g1,g2, nrow = 1)
Ring chart produced by imagering2().
#Example 1
library(patternplot)
library(png)
library(ggplot2)
group1<-c("Wind", "Hydro", "Solar", "Coal", "Natural Gas", "Oil")
pct1<-c(12, 15, 8, 22, 18, 25)
label1<-paste(group1, " \n ", pct1 , "%", sep="")
location<-gsub('\\','/',tempdir(), fixed=T)
pattern(type="blank", density=1, color='white', pattern.line.size=1, background.color="darkolivegreen1", pixel=20, res=15)
Wind<-readPNG(paste(location,'/',"blank",".png", sep=''))
pattern(type="blank", density=1, color='white', pattern.line.size=1, background.color="white", pixel=20, res=15)
Hydro<-readPNG(paste(location,'/',"blank",".png", sep=''))
pattern(type="blank", density=1, color='white', pattern.line.size=1, background.color="indianred", pixel=20, res=15)
Solar<-readPNG(paste(location,'/',"blank",".png", sep=''))
pattern(type="blank", density=1, color='white', pattern.line.size=1, background.color="gray81", pixel=20, res=15)
Coal<-readPNG(paste(location,'/',"blank",".png", sep=''))
pattern(type="blank", density=1, color='white', pattern.line.size=1, background.color="white", pixel=20, res=15)
NaturalGas<-readPNG(paste(location,'/',"blank",".png", sep=''))
pattern(type="blank", density=1, color='white', pattern.line.size=1, background.color="sandybrown", pixel=20, res=15)
Oil<-readPNG(paste(location,'/',"blank",".png", sep=''))
pattern.type1<-list(Wind, Hydro, Solar, Coal, NaturalGas, Oil)
group2<-c("Renewable", "Non-Renewable")
pct2<-c(35, 65)
label2<-paste(group2, " \n ", pct2 , "%", sep="")
pattern(type="grid", density=12, color='white', pattern.line.size=5, background.color="seagreen", pixel=20, res=15)
Renewable<-readPNG(paste(location,'/',"grid",".png", sep=''))
pattern(type="blank", density=1, color='white', pattern.line.size=1, background.color="deepskyblue", pixel=20, res=15)
NonRenewable<-readPNG(paste(location,'/',"blank",".png", sep=''))
pattern.type2<-list(Renewable, NonRenewable)
pattern.type.inner<-readPNG(system.file("img", "earth.png", package="patternplot"))
g<-imagerings2(group1, group2,pct1,pct2, label1, label2, label.size1=3, label.size2=3.5, label.color1='black', label.color2='black', label.distance1=0.7, label.distance2=1.3, pattern.type1, pattern.type2, pattern.type.inner, frame.color='skyblue',frame.size=1.5, r1=2.2, r2=4.2, r3=5)
g<-g+scale_x_continuous(limits=c(-7, 7))+scale_y_continuous(limits=c(-7, 7))
g
Bar charts produced by patternbar().
#Example 1
library(patternplot)
library(png)
library(ggplot2)
data <- read.csv(system.file("extdata", "monthlyexp.csv", package="patternplot"))
data<-data[which(data$Location=='City 1'),]
x<-factor(data$Type, c('Housing', 'Food', 'Childcare'))
y<-data$Amount
pattern.type<-c('hdashes', 'blank', 'crosshatch')
pattern.color=c('black','black', 'black')
background.color=c('white','white', 'white')
density<-c(20, 20, 10)
barp1<-patternbar(data,x, y,group=NULL,ylab='Monthly Expenses, Dollars', pattern.type=pattern.type, hjust=0.5,
pattern.color=pattern.color, background.color=background.color,pattern.line.size=c(5.5, 1, 4),
frame.color=c('black', 'black', 'black'), density=density)+scale_y_continuous(limits = c(0, 2800))+ggtitle('(A) Black and White with Patterns')
#Example 2
pattern.color=c('black','white', 'grey20')
background.color=c('lightgreen','lightgreen', 'lightgreen')
barp2<-patternbar(data,x, y,group=NULL,ylab='Monthly Expenses, Dollars', pattern.type=pattern.type,hjust=0.5,
pattern.color=pattern.color, background.color=background.color,pattern.line.size=c(5.5, 1, 4),
frame.color=c('black', 'black', 'black'), density=density)+scale_y_continuous(limits = c(0, 2800))+ggtitle('(B) Colors with Patterns')
library(gridExtra)
grid.arrange(barp1,barp2, nrow = 1)
#Example 3
data <- read.csv(system.file("extdata", "monthlyexp.csv", package="patternplot"))
group<-factor(data$Type, c('Housing', 'Food', 'Childcare'))
y<-data$Amount
x<-factor(data$Location, c('City 1', ' City 1'))
pattern.type<-c( 'Rsymbol_16', 'blank','hdashes')
pattern.color=c('yellow', 'chartreuse4', 'pink')
background.color=c('grey', 'chartreuse3', 'bisque')
barp3<-patternbar(data,x, y,group,ylab='Monthly Expenses, Dollars', pattern.type=pattern.type,
pattern.color=pattern.color,background.color=background.color, pattern.line.size=c(6, 10,6),
frame.size=1,frame.color='black',pixel=16, density=c(18, 10, 14), legend.type='h',
legend.h=12, legend.y.pos=0.49, vjust=-1, hjust=0.5,legend.pixel=6, legend.w=0.275,legend.x.pos=1.1) +scale_y_continuous(limits = c(0, 3100))+ggtitle('(C) Bar Chart with Two Grouping Variables')
barp3
Stacked Bar chart produced by patternbar_s().
#Example 1
library(patternplot)
library(png)
library(ggplot2)
data <- read.csv(system.file("extdata", "monthlyexp.csv", package="patternplot"))
x<-data$Location
y<-data$Amount
group<-data$Type
patternbar_s(data,x, y, group,xlab='', ylab='Monthly Expenses, Dollar', label.size=3,pattern.type=c( 'Rsymbol_16', 'blank','hdashes'), pattern.line.size=c(5, 10, 10),frame.size=1,pattern.color=c('yellow', 'chartreuse4', 'pink'),background.color=c('grey', 'chartreuse3', 'bisque'), pixel=16, density=c(18, 10, 10),frame.color='black', legend.type='h', legend.h=12, legend.y.pos=0.49, legend.pixel=6, legend.w=0.275, legend.x.pos=1.05,legend.label=c("Childcare", "Food", "Housing" ), bar.width=0.8)+scale_y_continuous(limits = c(0, 6800))+ggtitle('Stacked Bar Chart')
Bar charts produced by imagebar().
library(patternplot)
library(jpeg)
library(ggplot2)
childcare<-readJPEG(system.file("img", "childcare.jpg", package="patternplot"))
food<-readJPEG(system.file("img", "food.jpg", package="patternplot"))
housing <-readJPEG(system.file("img", "housing.jpg", package="patternplot"))
#Example 1
data <- read.csv(system.file("extdata", "monthlyexp.csv", package="patternplot"))
data<-data[which(data$Location=='City 1'),]
x<-factor(data$Type, c('Housing', 'Food', 'Childcare'))
y<-data$Amount
pattern.type<-list(housing, food, childcare)
imagebar(data,x, y,group=NULL,pattern.type=pattern.type,vjust=-1, hjust=0.5,
frame.color='black',
ylab='Monthly Expenses, Dollars')+ggtitle('(A) Bar Chart with Images')
#Example 2
data <- read.csv(system.file("extdata", "monthlyexp.csv", package="patternplot"))
group<-factor(data$Type, c('Housing', 'Food', 'Childcare'))
y<-data$Amount
x<-factor(data$Location, c('City 1', ' City 1'))
pattern.type<-list(housing, food, childcare)
imagebar(data,x, y,group,pattern.type=pattern.type,vjust=-1, hjust=0.5,
frame.color='black',
ylab='Monthly Expenses, Dollars')+ggtitle('(B) Image Bar Chart with Two Grouping Variables')
Stacked Bar chart produced by imagebar_s().
library(patternplot)
library(jpeg)
library(ggplot2)
childcare<-readJPEG(system.file("img", "childcare.jpg", package="patternplot"))
food<-readJPEG(system.file("img", "food.jpg", package="patternplot"))
housing <-readJPEG(system.file("img", "housing.jpg", package="patternplot"))
data <- read.csv(system.file("extdata", "monthlyexp.csv", package="patternplot"))
x<-data$Location
y<-data$Amount
group<-data$Type
pattern.type<-list(childcare, food, housing)
imagebar_s(data,x, y, group, xlab='', ylab='Monthly Expenses, Dollar', pattern.type=pattern.type, label.size=3.5, frame.size=1.25, frame.color='black',legend.type='h', legend.h=6, legend.y.pos=0.49, legend.pixel=20, legend.w=0.2,legend.x.pos=1.1, legend.label=c("Childcare", "Food", "Housing" ))+ scale_y_continuous(limits = c(0, 6800))+ggtitle('Stacked Bar Chart with Images')
Box plots produced by patternboxplot().
#Example 1
data <- read.csv(system.file("extdata", "fruits.csv", package="patternplot"))
group<-data$Fruit
y<-data$Weight
x<-data$Store
pattern.type<-c('nwlines', 'blank', 'waves')
pattern.color=c('black','black', 'black')
background.color=c('white','gray80', 'white')
frame.color=c('black', 'black', 'black')
pattern.line.size<-c(6, 1,6)
density<-c(6, 1, 8)
box1<-patternboxplot(data,x, y,group,pattern.type=pattern.type,pattern.line.size=pattern.line.size, label.size=3, pattern.color=pattern.color, background.color=background.color,frame.color=frame.color,
density=density, legend.h=2, legend.x.pos=1.075, legend.y.pos=0.499, legend.pixel=10,legend.w=0.18, legend.label=c("Orange","Strawberry","Watermelon"))+ggtitle('(A) Boxplot with Black and White Patterns')
#Example 2
pattern.color=c('black','white', 'grey20')
background.color=c('gold','lightpink', 'lightgreen')
box2<-patternboxplot(data,x, y,group=group,pattern.type=pattern.type,pattern.line.size=pattern.line.size, label.size=3,pattern.color=pattern.color, background.color=background.color,frame.color=frame.color, density=density,legend.h=2, legend.x.pos=1.075, legend.y.pos=0.499, legend.pixel=10,legend.w=0.18, legend.label=c("Orange","Strawberry","Watermelon"))+ggtitle('(B) Boxplot with Colors and Patterns')
library(gridExtra)
grid.arrange(box1,box2, nrow = 1)
Box plots produced by imageboxplot().
library(patternplot)
library(jpeg)
library(ggplot2)
Orange<-readJPEG(system.file("img", "oranges.jpg", package="patternplot"))
Strawberry <-readJPEG(system.file("img", "strawberries.jpg", package="patternplot"))
Watermelon<-readJPEG(system.file("img", "watermelons.jpg", package="patternplot"))
#Example 1
data <- read.csv(system.file("extdata", "fruits.csv", package="patternplot"))
x<-data$Fruit
y<-data$Weight
group<-data$Store
pattern.type<-list(Orange, Strawberry, Watermelon)
box1<-imageboxplot(data,x, y,group=NULL,pattern.type=pattern.type,frame.color=c('orange','darkred',
'darkgreen'),legend.label="", ylab='Weight, Pounds')+ggtitle('(A) Image Boxplot with One Grouping Variable')
#Example 2
x<-data$Store
y<-data$Weight
group<-data$Fruit
pattern.type<-list(Orange, Strawberry, Watermelon)
box2<-imageboxplot(data,x, y,group=group, pattern.type=pattern.type, frame.color=c('orange', 'darkred', 'darkgreen'), linetype=c('solid', 'dashed', 'dotted'),frame.size=0.8, xlab='', ylab='Weights, pounds', legend.h=2, legend.x.pos=1.1, legend.y.pos=0.499, legend.w=0.2, legend.label=c("Orange", "Strawberry", "Watermelon"))+ggtitle('(B) Image Boxplot with Two Grouping Variables')
library(gridExtra)
grid.arrange(box1,box2, nrow = 1)
Change the order of x and y axes.
library(patternplot)
library(png)
library(ggplot2)
data <- read.csv(system.file("extdata", "monthlyexp.csv", package="patternplot"))
data<-data[which(data$Location=='City 1'),]
x<-factor(data$Type, c('Housing', 'Food', 'Childcare'))
y<-data$Amount
pattern.type<-c('hdashes', 'blank', 'crosshatch')
pattern.color=c('black','black', 'black')
background.color=c('white','white', 'white')
density<-c(20, 20, 10)
g1<-patternbar(data,x, y,group=NULL,ylab='Monthly Expenses, Dollars', pattern.type=pattern.type,pattern.color=pattern.color, background.color=background.color,pattern.line.size=c(5.5, 1, 4),frame.color=c('black', 'black', 'black'), density=density, vjust=-1, hjust=0.5, bar.width=0.75)+scale_y_continuous(limits = c(0, 2800))+ggtitle('(A) Vertical Bar Chart')
g2<-patternbar(data,x, y,group=NULL,ylab='Monthly Expenses, Dollars', pattern.type=pattern.type,pattern.color=pattern.color, background.color=background.color,pattern.line.size=c(5.5, 1, 4),frame.color=c('black', 'black', 'black'), density=density, vjust=0.5, hjust=-0.25, bar.width=0.5)+scale_y_continuous(limits = c(0,2800))+ggtitle('(B) Horizontal Bar Chart')+coord_flip()
g3<-patternbar(data,x, y,group=NULL,ylab='Monthly Expenses, Dollars', pattern.type=pattern.type,pattern.color=pattern.color, background.color=background.color,pattern.line.size=c(5.5, 1, 4),frame.color=c('black', 'black', 'black'), density=density, vjust=2, hjust=0.5, bar.width=0.75)+ggtitle('(C) Reverse Bar Chart')+ scale_y_reverse(limits = c(2800,0))
library(gridExtra)
grid.arrange(g1,g2,g3, nrow = 1)
Change themes.
library(patternplot)
library(png)
library(ggplot2)
data <- read.csv(system.file("extdata", "monthlyexp.csv", package="patternplot"))
data<-data[which(data$Location=='City 1'),]
x<-factor(data$Type, c('Housing', 'Food', 'Childcare'))
y<-data$Amount
pattern.type<-c('hdashes', 'blank', 'crosshatch')
pattern.color=c('black','black', 'black')
background.color=c('white','white', 'white')
density<-c(20, 20, 10)
g1<-patternbar(data,x, y,group=NULL,ylab='Monthly Expenses, Dollars', pattern.type=pattern.type,pattern.color=pattern.color, background.color=background.color,pattern.line.size=c(5.5, 1, 4),frame.color=c('black', 'black', 'black'), density=density, vjust=-1, hjust=0.5)+scale_y_continuous(limits = c(0, 2800))+ggtitle('(A) Bar Chart with Default Theme')
g2<-patternbar(data,x, y,group=NULL,ylab='Monthly Expenses, Dollars', pattern.type=pattern.type,pattern.color=pattern.color, background.color=background.color,pattern.line.size=c(5.5, 1, 4),frame.color=c('black', 'black', 'black'), density=density, vjust=-1, hjust=0.5)+scale_y_continuous(limits = c(0, 2800))+ggtitle('(B) Bar Chart with Classic Theme')+ theme_classic()
library(gridExtra)
grid.arrange(g1,g2, nrow = 1)
Unicode symbols as pattern.
library(patternplot)
library(png)
library(ggplot2)
#http://www.alanwood.net/demos/wgl4.html
data <- data.frame(Type=c('Sunny', 'Cloudy', 'Rainy', 'Snowy'), Amount=c(5, 2, 3, 4))
x<-factor(data$Type, c('Sunny', 'Cloudy', 'Rainy', 'Snowy'))
y<-data$Amount
pattern.type<-c('Unicode_\u2600', 'Unicode_\u2601', 'Unicode_\u2602', 'Unicode_\u2603')
pattern.color<-c('yellow','white','red', 'white')
background.color=c('deepskyblue','deepskyblue','deepskyblue', 'deepskyblue')
density<-c(16, 20, 16, 16)
g1<-patternbar(data,x, y,group=NULL,ylab='Number of Days', pattern.type=pattern.type,pattern.color=pattern.color, background.color=background.color,pattern.line.size=c(10, 7, 10, 10), density=density, vjust=-1, hjust=0.5, bar.width =0.5)+scale_y_continuous(limits = c(0, 6))+ggtitle('(A) Bar Chart with Weather Symbols')
data <- data.frame(Type=c('Female', 'Male'), Amount=c(50, 40))
x<-data$Type
y<-data$Amount
pattern.type<-c('Unicode_\u2640', 'Unicode_\u2642')
pattern.color<-c('violet','deepskyblue')
background.color=c('seashell','seashell')
density<-c(10, 10)
g2<-patternbar(data,x, y,group=NULL,ylab='Number of People', pattern.type=pattern.type,pattern.color=pattern.color, background.color=background.color,pattern.line.size=c(14, 14), density=density, pixel=18, vjust=-1, hjust=0.5, bar.width =0.5)+scale_y_continuous(limits = c(0, 60))+ggtitle('(B) Bar Chart with Gender Symbols')
library(gridExtra)
grid.arrange(g1,g2, nrow = 1)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.