The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The partitions
package provides efficient vectorized
code to enumerate solutions to various integer equations. For example,
we might note that
[ 5 = 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1](https://latex.codecogs.com/png.image?%5Cdpi%7B110%7D&space;%5Cbg_white&space;%0A5%20%3D%204%2B1%20%3D%203%2B2%20%3D%203%2B1%2B1%20%3D%202%2B2%2B1%20%3D%202%2B1%2B1%2B1%20%3D%201%2B1%2B1%2B1%2B1%0A ” 5 = 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1 “)
and we might want to list all seven in a consistent format (note here that each sum is written in nonincreasing order, so is considered to be the same as ).
You can install the released version of wedge from CRAN with:
# install.packages("partitions") # uncomment this to install the package
library("partitions")
partitions
package in useTo enumerate the partitions of 5:
parts(5)
#>
#> [1,] 5 4 3 3 2 2 1
#> [2,] 0 1 2 1 2 1 1
#> [3,] 0 0 0 1 1 1 1
#> [4,] 0 0 0 0 0 1 1
#> [5,] 0 0 0 0 0 0 1
(each column is padded with zeros). Of course, larger integers have
many more partitions and in this case we can use
summary()
:
summary(parts(16))
#>
#> [1,] 16 15 14 14 13 13 13 12 12 12 ... 3 2 2 2 2 2 2 2 2 1
#> [2,] 0 1 2 1 3 2 1 4 3 2 ... 1 2 2 2 2 2 2 2 1 1
#> [3,] 0 0 0 1 0 1 1 0 1 2 ... 1 2 2 2 2 2 2 1 1 1
#> [4,] 0 0 0 0 0 0 1 0 0 0 ... 1 2 2 2 2 2 1 1 1 1
#> [5,] 0 0 0 0 0 0 0 0 0 0 ... 1 2 2 2 2 1 1 1 1 1
#> [6,] 0 0 0 0 0 0 0 0 0 0 ... 1 2 2 2 1 1 1 1 1 1
#> [7,] 0 0 0 0 0 0 0 0 0 0 ... 1 2 2 1 1 1 1 1 1 1
#> [8,] 0 0 0 0 0 0 0 0 0 0 ... 1 2 1 1 1 1 1 1 1 1
#> [9,] 0 0 0 0 0 0 0 0 0 0 ... 1 0 1 1 1 1 1 1 1 1
#> [10,] 0 0 0 0 0 0 0 0 0 0 ... 1 0 0 1 1 1 1 1 1 1
#> [11,] 0 0 0 0 0 0 0 0 0 0 ... 1 0 0 0 1 1 1 1 1 1
#> [12,] 0 0 0 0 0 0 0 0 0 0 ... 1 0 0 0 0 1 1 1 1 1
#> [13,] 0 0 0 0 0 0 0 0 0 0 ... 1 0 0 0 0 0 1 1 1 1
#> [14,] 0 0 0 0 0 0 0 0 0 0 ... 1 0 0 0 0 0 0 1 1 1
#> [15,] 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1
#> [16,] 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 1
Sometimes we want to find the unequal partitions (that is, partitions without repeats):
summary(diffparts(16))
#>
#> [1,] 16 15 14 13 13 12 12 11 11 11 ... 8 8 7 7 7 7 7 6 6 6
#> [2,] 0 1 2 3 2 4 3 5 4 3 ... 5 4 6 6 5 5 4 5 5 4
#> [3,] 0 0 0 0 1 0 1 0 1 2 ... 2 3 3 2 4 3 3 4 3 3
#> [4,] 0 0 0 0 0 0 0 0 0 0 ... 1 1 0 1 0 1 2 1 2 2
#> [5,] 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 1
Sometimes we have restrictions on the partition. For example, to
enumerate the partitions of 9 into 5 parts we would use
restrictedparts()
:
summary(restrictedparts(9,5))
#>
#> [1,] 9 8 7 6 5 7 6 5 4 5 ... 5 4 4 3 3 5 4 3 3 2
#> [2,] 0 1 2 3 4 1 2 3 4 2 ... 2 3 2 3 2 1 2 3 2 2
#> [3,] 0 0 0 0 0 1 1 1 1 2 ... 1 1 2 2 2 1 1 1 2 2
#> [4,] 0 0 0 0 0 0 0 0 0 0 ... 1 1 1 1 2 1 1 1 1 2
#> [5,] 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 1 1 1 1 1
and if we want the partitions of 9 into parts not exceeding 5 we would use the conjugate of this:
summary(conjugate(restrictedparts(9,5)))
#>
#> [1,] 1 2 2 2 2 3 3 3 3 3 ... 4 4 4 4 4 5 5 5 5 5
#> [2,] 1 1 2 2 2 1 2 2 2 3 ... 2 2 3 3 4 1 2 2 3 4
#> [3,] 1 1 1 2 2 1 1 2 2 1 ... 1 2 1 2 1 1 1 2 1 0
#> [4,] 1 1 1 1 2 1 1 1 2 1 ... 1 1 1 0 0 1 1 0 0 0
#> [5,] 1 1 1 1 1 1 1 1 0 1 ... 1 0 0 0 0 1 0 0 0 0
#> [6,] 1 1 1 1 0 1 1 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
#> [7,] 1 1 1 0 0 1 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
#> [8,] 1 1 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
#> [9,] 1 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
Sometimes we have restrictions on each element of a partition and in
this case we would use blockparts()
:
summary(blockparts(1:6,10))
#>
#> [1,] 1 1 1 1 0 1 1 1 0 1 ... 0 1 0 0 0 1 0 0 0 0
#> [2,] 2 2 2 1 2 2 2 1 2 2 ... 0 0 1 0 0 0 1 0 0 0
#> [3,] 3 3 2 3 3 3 2 3 3 1 ... 2 0 0 1 0 0 0 1 0 0
#> [4,] 4 3 4 4 4 2 3 3 3 4 ... 0 1 1 1 2 0 0 0 1 0
#> [5,] 0 1 1 1 1 2 2 2 2 2 ... 2 2 2 2 2 3 3 3 3 4
#> [6,] 0 0 0 0 0 0 0 0 0 0 ... 6 6 6 6 6 6 6 6 6 6
which would show all solutions to , .
Above we considered and to be the same partition, but if these are considered to be distinct, we need the compositions, not partitions:
compositions(4)
#>
#> [1,] 4 1 2 1 3 1 2 1
#> [2,] 0 3 2 1 1 2 1 1
#> [3,] 0 0 0 2 0 1 1 1
#> [4,] 0 0 0 0 0 0 0 1
A set of 4 elements, WLOG , may be partitioned into subsets
in a number of ways and these are enumerated with the
setparts()
function:
setparts(4)
#>
#> [1,] 1 1 1 1 2 1 1 1 1 1 1 2 2 2 1
#> [2,] 1 1 1 2 1 2 1 2 2 1 2 1 1 3 2
#> [3,] 1 2 1 1 1 2 2 1 3 2 1 3 1 1 3
#> [4,] 1 1 2 1 1 1 2 2 1 3 3 1 3 1 4
In the above, column 2 3 1 1
would correspond to the set
partition .
Knuth deals with multisets (that is, a generalization of the concept of set, in which elements may appear more than once) and gives an algorithm for enumerating a multiset. His simplest example is the permutations of :
multiset(c(1,2,2,3))
#>
#> [1,] 1 1 1 2 2 2 2 2 2 3 3 3
#> [2,] 2 2 3 1 1 2 2 3 3 1 2 2
#> [3,] 2 3 2 2 3 1 3 1 2 2 1 2
#> [4,] 3 2 2 3 2 3 1 2 1 2 2 1
It is possible to answer questions such as the permutations of the word “pepper”:
library("magrittr")
"pepper" %>%
strsplit("") %>%
%>%
unlist match(letters) %>%
%>%
multiset apply(2,function(x){x %>% `[`(letters,.) %>% paste(collapse="")})
#> [1] "eepppr" "eepprp" "eeprpp" "eerppp" "epeppr" "epeprp" "eperpp" "eppepr"
#> [9] "epperp" "eppper" "epppre" "epprep" "epprpe" "eprepp" "eprpep" "eprppe"
#> [17] "ereppp" "erpepp" "erppep" "erpppe" "peeppr" "peeprp" "peerpp" "pepepr"
#> [25] "peperp" "pepper" "peppre" "peprep" "peprpe" "perepp" "perpep" "perppe"
#> [33] "ppeepr" "ppeerp" "ppeper" "ppepre" "pperep" "pperpe" "pppeer" "pppere"
#> [41] "pppree" "ppreep" "pprepe" "pprpee" "preepp" "prepep" "preppe" "prpeep"
#> [49] "prpepe" "prppee" "reeppp" "repepp" "reppep" "repppe" "rpeepp" "rpepep"
#> [57] "rpeppe" "rppeep" "rppepe" "rpppee"
A riffle shuffle is an ordering of integers such that and appear in their original
order: if , then
, and if , then . The two groups of integers appear
in their original order. To enumerate all riffles, use riffle()
:
riffle(2,4)
#>
#> [1,] 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3
#> [2,] 2 3 3 3 3 1 1 1 1 4 4 4 4 4 4
#> [3,] 3 2 4 4 4 2 4 4 4 1 1 1 5 5 5
#> [4,] 4 4 2 5 5 4 2 5 5 2 5 5 1 1 6
#> [5,] 5 5 5 2 6 5 5 2 6 5 2 6 2 6 1
#> [6,] 6 6 6 6 2 6 6 6 2 6 6 2 6 2 2
To enumerate all riffles with sizes , use
genrif()
:
genrif(1:3)
#>
#> [1,] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4
#> [2,] 2 2 2 2 4 4 4 4 4 4 1 1 1 1 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 2
#> [3,] 3 4 4 4 2 2 2 5 5 5 3 4 4 4 1 4 4 4 1 1 1 3 3 3 5 5 5 5 5 5 2 2 2 5 5 5 1
#> [4,] 4 3 5 5 3 5 5 2 2 6 4 3 5 5 4 1 5 5 3 5 5 1 5 5 1 1 3 3 6 6 3 5 5 2 2 6 3
#> [5,] 5 5 3 6 5 3 6 3 6 2 5 5 3 6 5 5 1 6 5 3 6 5 1 6 3 6 1 6 1 3 5 3 6 3 6 2 5
#> [6,] 6 6 6 3 6 6 3 6 3 3 6 6 6 3 6 6 6 1 6 6 3 6 6 1 6 3 6 1 3 1 6 6 3 6 3 3 6
#>
#> [1,] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [2,] 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5
#> [3,] 1 1 3 3 3 5 5 5 5 5 5 1 1 1 2 2 2 2 2 2 6 6 6
#> [4,] 5 5 1 5 5 1 1 3 3 6 6 2 2 6 1 1 3 3 6 6 1 2 2
#> [5,] 3 6 5 1 6 3 6 1 6 1 3 3 6 2 3 6 1 6 1 3 2 1 3
#> [6,] 6 3 6 6 1 6 3 6 1 3 1 6 3 3 6 3 6 1 3 1 3 3 1
For more detail, see the package vignettes
vignette("partitionspaper")
vignette("setpartitions")
vignette("scrabble")
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.