The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
install.packages("overtureR")
# devtools::install_github("arthurgailes/overtureR")
dplyr
and sf
integrationsf
data within
duckdb
or with sf
Replicating duckdb
examples fromm the Overture
docs
library(overtureR)
library(dplyr)
library(ggplot2)
<- open_curtain("division_area") |>
counties # in R, filtering on variables must come before removing them via select
filter(subtype == "county" & country == "US" & region == "US-PA") |>
transmute(
id,
division_id,primary = names$primary,
geometry|>
) collect()
# Plot the results
ggplot(counties) +
geom_sf(aes(fill = as.numeric(sf::st_area(geometry))), color = "white", size = 0.2) +
::scale_fill_viridis(option = "plasma", guide = FALSE) +
viridislabs(
title = "Pennsylvania Counties by Area",
caption = "Data: Overture Maps"
)
library(overtureR)
library(dplyr)
# lazily load the full `mountains` dataset
<- open_curtain(type = "*", theme = "places") |>
mountains transmute(
id,primary_name = names$primary,
x = bbox$xmin,
y = bbox$ymin,
main_category = categories$primary,
primary_source = sources[[1]]$dataset,
confidence,# currently no duckdb spatial implementation
geometry |>
) filter(main_category == "mountain" & confidence > .90)
head(mountains)
#> # Source: SQL [6 x 8]
#> # Database: DuckDB v1.0.0 [Arthur.Gailes@Windows 10 x64:R 4.2.1/:memory:]
#> id primary_name x y main_category primary_source confidence
#> <chr> <chr> <dbl> <dbl> <chr> <chr> <dbl>
#> 1 08f464e0e312… Kawaikini -159. 22.1 mountain meta 0.954
#> 2 08f464e3b1a2… Kalepa -159. 22.0 mountain meta 0.938
#> 3 08f464e05984… Sleeping Gi… -159. 22.1 mountain meta 0.945
#> 4 08f464e3a4d0… Nounou-East… -159. 22.1 mountain meta 0.945
#> 5 08f464e05514… Makaleha Mo… -159. 22.1 mountain meta 0.965
#> 6 08f464e03538… Makana -160. 22.2 mountain meta 0.938
#> # ℹ 1 more variable: geometry <POINT [°]>
The record_overture function allows you to download Overture Maps data to a local directory, maintaining the same partition structure as in S3. This is useful for offline analysis or when you need to work with the data repeatedly. Here’s an example:
library(overtureR)
library(ggplot2)
library(dplyr)
library(rayshader)
# Define a bounding box for New York City
<- c(xmin = -73.9901, ymin = 40.755488, xmax = -73.98, ymax = 40.76206)
broadway
# Download building data for NYC to a local directory
<- open_curtain("building", broadway) |>
local_buildings record_overture(output_dir = tempdir(), overwrite = TRUE)
# The downloaded data is returned as a `dbplyr` object, same as the original (but faster!)
<- local_buildings |>
broadway_buildings filter(!is.na(height)) |>
mutate(height = round(height)) |>
collect()
<- ggplot(broadway_buildings) +
p geom_sf(aes(fill = height)) +
scale_fill_distiller(palette = "Oranges", direction = 1) +
# guides(fill = FALSE) +
labs(title = "Buildings on Broadway", caption = "Data: Overture Maps", fill = "")
# Convert to 3D and render
plot_gg(
p,multicore = TRUE,
width = 6, height = 5, scale = 250,
windowsize = c(1032, 860),
zoom = 0.55,
phi = 40, theta = 0,
solid = FALSE,
offset_edges = TRUE,
sunangle = 75
)
render_snapshot(clear=TRUE)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.