The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(outlierensembles)
library(ggplot2)
library(dbscan)
#>
#> Attaching package: 'dbscan'
#> The following object is masked from 'package:stats':
#>
#> as.dendrogram
Let us add some anomalies inside an ring.
set.seed(1)
r1 <-runif(803)
r2 <-rnorm(803, mean=5)
theta = 2*pi*r1;
R1 <- 2
R2 <- 2
dist = r2+R2;
x = dist * cos(theta)
y = dist * sin(theta)
X <- data.frame(
x1 = x,
x2 = y
)
labs <- c(rep(0,800), rep(1,3))
nn <- dim(X)[1]
knn_auc <- lof_auc <- cof_auc <- rep(0, 10)
mu <- 0
z <- cbind(rnorm(3,mu, sd=0.2), rnorm(3,0, sd=0.2))
X[801:803, 1:2] <- z
ggplot(X, aes(x1, x2)) + geom_point()
Let us find outliers using the R package dbscan and use the IRT ensemble to construct an ensemble score.
# Using different parameters of lof for anomaly detection
y1 <- dbscan::lof(X, minPts = 5)
y2 <- dbscan::lof(X, minPts = 10)
y3 <- dbscan::lof(X, minPts = 20)
knnobj <- dbscan::kNN(X, k = 20)
# Using different KNN distances as anomaly scores
y4 <- knnobj$dist[ ,5]
y5 <- knnobj$dist[ ,10]
y6 <- knnobj$dist[ ,20]
# Dense points are less anomalous. Points in less dense areas are more anomalous. Hence 1 - pointdensity is used.
y7 <- 1 - dbscan::pointdensity(X, eps = 1, type="gaussian")
y8 <- 1 - dbscan::pointdensity(X, eps = 2, type = "gaussian")
y9 <- 1 - dbscan::pointdensity(X, eps = 0.5, type = "gaussian")
Y <- cbind.data.frame(y1, y2, y3, y4, y5, y6, y7, y8, y9)
ens1 <- irt_ensemble(Y)
df <- cbind.data.frame(X, ens1$scores)
colnames(df)[3] <- "IRT"
ggplot(df, aes(x1, x2)) + geom_point(aes(color=IRT)) + scale_color_gradient(low="yellow", high="red")
Then we do the greedy ensemble.
ens2 <- greedy_ensemble(Y)
df <- cbind.data.frame(X, ens2$scores)
colnames(df)[3] <- "Greedy"
ggplot(df, aes(x1, x2)) + geom_point(aes(color=Greedy)) + scale_color_gradient(low="yellow", high="red")
We do the ICWA ensemble next.
ens3 <- icwa_ensemble(Y)
df <- cbind.data.frame(X, ens3)
colnames(df)[3] <- "ICWA"
ggplot(df, aes(x1, x2)) + geom_point(aes(color=ICWA)) + scale_color_gradient(low="yellow", high="red")
Next, we use the maximum scores to build the ensemble.
ens4 <- max_ensemble(Y)
df <- cbind.data.frame(X, ens4)
colnames(df)[3] <- "Max"
ggplot(df, aes(x1, x2)) + geom_point(aes(color=Max)) + scale_color_gradient(low="yellow", high="red")
Then, we use the a threshold sum to construct the ensemble.
ens5 <- threshold_ensemble(Y)
df <- cbind.data.frame(X, ens5)
colnames(df)[3] <- "Threshold"
ggplot(df, aes(x1, x2)) + geom_point(aes(color=Threshold)) + scale_color_gradient(low="yellow", high="red")
Finally, we use the mean values as the ensemble score.
ens6 <- average_ensemble(Y)
df <- cbind.data.frame(X, ens6)
colnames(df)[3] <- "Average"
ggplot(df, aes(x1, x2)) + geom_point(aes(color=Average)) + scale_color_gradient(low="yellow", high="red")
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.