The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
{outForest} is a multivariate anomaly detection method. Each numeric variable is regressed onto all other variables using a random forest. If the scaled absolute difference between observed value and out-of-bag prediction is larger than a prespecified threshold, then a value is considered an outlier. After identification of outliers, they can be replaced, e.g., by predictive mean matching from the non-outliers.
The method can be viewed as a multivariate extension of a basic univariate outlier detection method, in which a value is considered an outlier if it deviates from the mean by more than, say, three times the standard deviation. In the multivariate case, instead of comparing a value with the overall mean, rather the difference to the conditional mean is considered. {outForest} estimates this conditional mean by a random forest.
Once the method is trained on a reference data set, it can be applied to new data.
# From CRAN
install.packages("outForest")
# Development version
::install_github("mayer79/outForest") devtools
We first generate a data set with about 2% outliers values in each numeric column. Then, we try to identify them.
library(outForest)
set.seed(3)
# Generate data with outliers in numeric columns
head(irisWithOutliers <- generateOutliers(iris, p = 0.02))
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species
# 5.1 3.500000 1.4 0.2 setosa
# 4.9 3.000000 1.4 0.2 setosa
# 4.7 3.200000 1.3 0.2 setosa
# 4.6 3.100000 1.5 0.2 setosa
# 5.0 -3.744405 1.4 0.2 setosa
# 5.4 3.900000 1.7 0.4 setosa
# Find outliers by random forest regressions and replace them by predictive mean matching
<- outForest(irisWithOutliers, allow_predictions = TRUE))
(out
# Plot the number of outliers per numeric variable
plot(out)
# Information on outliers
head(outliers(out))
# row col observed predicted rmse score threshold replacement
# 5 Sepal.Width -3.744405 3.298493 0.7810172 -9.017596 3 2.8
# 20 Sepal.Length 10.164017 5.141093 0.6750468 7.440852 3 5.4
# 138 Petal.Width 4.721186 2.113464 0.3712539 7.024092 3 2.1
# 68 Petal.Width -1.188913 1.305339 0.3712539 -6.718452 3 1.2
# 137 Sepal.Width 8.054524 2.861445 0.7810172 6.649122 3 2.9
# 15 Petal.Length 6.885277 1.875646 0.7767877 6.449163 3 1.3
# Resulting data set with replaced outliers
head(Data(out))
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species
# 5.1 3.5 1.4 0.2 setosa
# 4.9 3.0 1.4 0.2 setosa
# 4.7 3.2 1.3 0.2 setosa
# 4.6 3.1 1.5 0.2 setosa
# 5.0 2.8 1.4 0.2 setosa
# 5.4 3.9 1.7 0.4 setosa
# Out-of-sample application
<- iris[1, ]
iris1 $Sepal.Length <- -1
iris1<- predict(out, newdata = iris1)
pred
# Did we find the outlier?
outliers(pred)
# row col observed predicted rmse score threshold replacement
# 1 Sepal.Length -1 4.960069 0.6750468 -8.82912 3 6.4
# Fixed data
Data(pred)
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species
# 6.4 3.5 1.4 0.2 setosa
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.