Package ‘otel’

July 31, 2025

Title 'OpenTelemetry' R''APT'
Version 0.1.0

Description 'OpenTelemetry' is a collection of tools,
'APIs', and 'SDKs' used to instrument, generate, collect, and export
telemetry data (metrics, logs, and traces) for analysis in order to
understand your software's performance and behavior.
This package implements the 'OpenTelemetry' 'API":
<https://opentelemetry.io/docs/specs/otel/>
Use this package as a dependency if you want to instrument your R
package for 'OpenTelemetry'.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.2.9000
Depends R (>=3.6.0)

Suggests callr, cli, glue, otelsdk, processx, shiny, spelling,
testthat (>= 3.0.0), utils, withr

Config/Needs/website tidyverse/tidytemplate
Config/testthat/edition 3

URL https://otel.r-1lib.org, https://github.com/r-1lib/otel

Additional_repositories https://github.com/r-1ib/otelsdk/releases/download/devel
NeedsCompilation no

Author Gabor Csardi [aut, cre]

Maintainer Gabor Csardi <csardi.gabor@gmail.com>

Repository CRAN

Date/Publication 2025-07-31 10:00:24 UTC

Contents

as_attributes L e e e e e
counter_add e

https://opentelemetry.io/docs/specs/otel/
https://otel.r-lib.org
https://github.com/r-lib/otel
https://github.com/r-lib/otelsdk/releases/download/devel

Index

Contents

default_tracer name e e 4
end_span L. e 6
Environment Variables 7
extract_http_context. e 9
gauge _record e 10
Getting Started 11
get_active_span_ConteXt e e e e 15
get_default_logger_provider 16
get_default_meter_provider 17
get_default_tracer_provider 18
get_loggero 19
et MELET o e e e e e e e e e e e e e e e 20
GELITACET . . . v v o e 21
histogram_record 22
is_logging_enabled 23
is_measuring_enabledo 24
is_tracing_enabled 25
local_active_span e e e 26
log . . o e e 27
log_severity_levels e e 28
meter_provider_noop e e 29
otel_COUNEr e e e e e e e e e e e e 29
otel_gauge 30
otel_histogram L. 31
otel_logger e 32
otel_logger_provider 35
otel_MELEer e e e e e e e e e e e e e 36
otel_meter_provider L. 38
otel_span e e e 40
otel_Span_Context e e e e 44
otel_tracer e 46
otel_tracer_provider e e e 48
otel_up_down_counter 49
pack_http_context L. e e e 50
start_local_active_span 51
Start_Span e e e e e e 52
tracer_provider_noop e e 54
tracing-Constants e e e e e e e 55
up_down_counter_add e 56
with_active_span L e 57
Zero Code Instrumentation 58

60

as_attributes 3

as_attributes R objects as OpenTelemetry attributes

Description

Convert a list of R objects to a form that is suitable as OpenTelemetry attributes.

Usage

as_attributes(x)

Arguments

X A list of R objects, to be used as OpenTelemetry attributes.

Value

A named list that can be used as the attributes argument to the start_span() method of otel_tracer,
the log () method of otel_logger, etc.

If x is not named, or some names are the empty string or NA, then integer numbers as used for the
missing or invalid names.

If some elements in x are not of the natively supported R types in OpenTelemetry (character, logical,
double, integer), then their printed form is captured using utils: :capture.output().

Limits:
The number of attributes can be limited with the OTEL_ATTRIBUTE_VALUE_LENGTH_LIMIT
environment variable. The default is 128.

The length of the each attribute (vector) can be limited with the OTEL_ATTRIBUTE_VALUE_LENGTH_LIMIT
environment variable. The default is Inf. Note that this is applied to the length of each attribute
as an R vector. E.g. it does not currently limit the number of characters in individual strings.

Examples

as_attributes(list(
number = 1.0,
vector 1:10,
string = "otel”,
string_vector = letters,
object = mtcars

)

4 default_tracer_name

counter_add Increase an OpenTelemetry counter

Description

Increase an OpenTelemetry counter

Usage

counter_add(name, value = 1L, attributes = NULL, context = NULL, meter = NULL)

Arguments

name Name of the counter.

value Value to add to the counter, defaults to 1.

attributes Additional attributes to add.

context Span context. If missing the active context is used, if any.

meter Meter object (otel_meter). Otherwise it is passed to get_meter () to get a meter.
Value

The counter object (otel_counter), invisibly.

See Also

Other OpenTelemetry metrics instruments: gauge_record(), histogram_record(), up_down_counter_add()

Other OpenTelemetry metrics API: gauge_record(), histogram_record(), is_measuring_enabled(),
up_down_counter_add()

Examples

otel::counter_add("total-session-count”, 1)

default_tracer_name Default tracer name (and meter and logger name) for an R package

Description

Exporters, like the ones in the otelsdk package, can use this function to determine the default tracer
name, if the instrumentation author hasn’t specified one. If you are an instrumentation author, you
probably do not need to call this function directly, but do read on to learn about choosing and setting
the tracer name.

default_tracer_name 5

Usage

default_tracer_name(name = NULL)

Arguments
name Custom tracer name. If NULL then otel will construct a a tracer (meter, logger)
name according to the algorithm detailed below.
Details

About tracer names:

The name of a tracer identifies an OpenTelemetry instrumentation scope. Instrumentation scopes
can be used to organize the collected telemetry data. otel can also use instrumentation scopes to
suppress emitting unneeded telemetry data, see Environment Variables’.

For the otel R package it makes sense to create a separate instrumentation scope for each R
package that emits telemetry data. otel can do this automatically, with some from the package
author.

Setting the tracer name:

As a package author, you can define the otel_tracer_name symbol in your package and set it do
the desired tracer name. For example, the callr package has this in an .R file:

otel_tracer_name <- "org.r-lib.callr”

See below for tips on choosing a tracer name.

If you don’t like the default tracer name, you can call get_tracer() (or get_logger() or
get_meter () manually with the desired name.

Automatic tracer name detection in otel:
This is the detailed algorithm that otel uses in default_tracer_name:
» Using base: : topenv() it finds the calling package (or other top level environment), recur-
sively.
* Itignores the otel and otelsdk packages while searching.

« If it finds the base environment or the global environment, then it returns org.project.R as
the tracer name.

* Otherwise it looks for the otel_tracer_name symbol inside the top level environment it has
found. If this symbol exists then it must be a string scalar and otel will use it as the tracer
name.

* If this symbol does not exist, then otel will use r.package.<environment-name> as the
tracer name. <environment-name> is usually the package name.

Choosing a tracer name:

The OpenTelemetry specification recommends using a tracer name that identifies the instrumen-
tation scope, i.e. your package.

Some tips on choosing the tracer name:

* If your R package can be associated with a URL, you can use the "reverse" of that URL. E.g.
since the callr package’s online manual is at https://callr.r-lib.org, it can use org.r-1lib.callr.

https://opentelemetry.io/docs/specs/otel/trace/api/#get-a-tracer

6 end_span

* If your R package belongs to your company, you can use the "reverse" of the company URL,
possibly with an additional prefix. E.g. for the shiny R package by Posit, co.posit.r-package.shiny
seems like a good name.

e Ifyoudon’tsetotel_tracer_name, then default_tracer_name will use r.package.<package-name>
as the tracer name.

Value
A list with entries:
* name: The supplied or auto-detected tracer name.

* package: Auto-detected package name or NA.

* on: Whether tracing is enabled for this package.

Examples

default_tracer_name()

end_span End an OpenTelemetry span

Description

Spans created with start_local_active_span() end automatically by default. You must end ev-
ery other span manually, by calling end_span, or using the end_on_exit argument of local_active_span()
or with_active_span().

Usage

end_span(span)

Arguments

span The span to end.

Value

Nothing.

See Also

Other OpenTelemetry trace API: Zero Code Instrumentation, is_tracing_enabled(), local_active_span(),
start_local_active_span(), start_span(), tracing-constants, with_active_span()

Environment Variables 7

Examples

fun <- function() {
start span, do not activate
spn <- otel::start_span("myfun")
do not leak resources
on.exit(otel::end_span(spn), add = TRUE)
myfun <- function() {
activate span for this function
otel::local_active_span(spn)
create child span
spn2 <- otel::start_local_active_span("myfun/2")

3

myfun2 <- function() {
activate span for this function
otel::local_active_span(spn)
create child span
spn3 <- otel::start_local_active_span("myfun/3")
}
myfun()
myfun2()
end_span(spn)
3
fun()

Environment Variables Environment variables to configure otel

Description

This manual page contains the environment variables you can use to configure the otel package.
Start with the ’Selecting exporters’ section below if you want to produce telemetry data for an
instrumented R package.

See also the Environment Variables in the otelsdk package, which is charge of the data collection
configuration.

Details

You need set these environment variables when configuring the collection of telemetry data, unless
noted otherwise.

Production or Development Environment:

OTEL_ENV:

By default otel runs in production mode. In production mode otel functions never error. Errors
in the telemetry code will not stop the monitored application.

This behavior is not ideal for development, where one would prefer to catch errors early. Set

OTEL_ENV=dev

to run otel in development mode, where otel functions fail on error, make it easier to fix errors.

Environment Variables

Selecting Exporters:

otel is responsible for selecting the providers to use for traces, logs and metrics. You can use the
environment variables below to point the otel functions to the desired providers.

If none of these environment variables are set, then otel will not emit any telemetry data.

See the otelsdk package for configuring the selected providers.

OTEL_TRACES_EXPORTER:
The name of the selected tracer provider. See get_default_tracer_provider() for the pos-
sible values.

OTEL_R_TRACES_EXPORTER:
R specific version of OTEL_TRACES_EXPORTER.

OTEL_LOGS_EXPORTER:
The name of the selected logger provider. See get_default_logger_provider() for the pos-
sible values.

OTEL_R_LOGS_EXPORTER:
R specific version of OTEL_LOGS_EXPORTER.

OTEL_METRICS_EXPORTER:
The name of the selected meter provider. See get_default_meter_provider() for the possi-
ble values.

OTEL_R_METRICS_EXPORTER:
R specific version of OTEL_METRICS_EXPORTER.

Suppressing Instrumentation Scopes (R Packages):

otel has two environment variables to fine tune which instrumentation scopes (i.e. R packages,
typically) emit telemetry data. By default, i.e. if neither of these are set, all packages emit
telemetry data.

OTEL_R_EMIT_SCOPES:

Set this environment variable to a comma separated string of instrumentation scope names or
R package names to restrict telemetry to these packages only. The name of the instrumentation
scope is the same as the name of the tracer, logger or meter, see default_tracer_name().
You can mix package names and instrumentation scope names and you can also use wildcards
(globbing). For example the value

OTEL_R_EMIT_SCOPES="org.r-lib.*,dplyr"

selects all packages with an instrumentation scope that starts with org.r-1ib. and also dplyr.

OTEL_R_SUPPRESS_SCOPES:

Set this environment variable to a comma separated string of instrumentation scope names or R
package names to suppress telemetry data from these packages. The name of the instrumentation
scope is the same as the name of the tracer, logger or meter, see default_tracer_name().
You can mix package names and instrumentation scope names and you can also use wildcards
(globbing). For example the value

OTEL_R_SUPPRESS_SCOPES="org.r-lib.*,dplyr"

excludes packages with an instrumentation scope that starts with org.r-1ib. and also dplyr.

Zero Code Instrumentation:

otel can instrument R packages for OpenTelemetry data collection without changing their source
code. This relies on changing the code of the R functions manually using base: : trace() and
can be configured using environment variables.

https://github.com/r-lib/otelsdk

extract_http_context 9

OTEL_R_INSTRUMENT_PKGS:

Set OTEL_R_INSTRUMENT_PKGS to a comma separated list of packages to instrument. The au-
tomatic instrumentation happens when the otel package is loaded, so in general it is best to set
this environment variable before loading R.

OTEL_R_INSTRUMENT_PKGS_<pkg>_INCLUDE:

For an automatically instrumented package, set this environment variable to only instrument a
subset of its functions. It is parsed as a comma separated string of function names, which may
also include ? and * wildcards (globbing).

OTEL_R_INSTRUMENT_PKGS_<pkg>_EXCLUDE:

For an automatically instrumented package, set this environment variable to exclude some func-
tions from instrumentation. It has the same syntax as its *x_INCLUDE pair. If both are set, then
inclusion is applied and the exclusion.

Others:

OTEL_ATTRIBUTE_COUNT_LIMIT:
Set this environment variable to limit the number of attributes for a single span, log record,
metric measurement, etc. If unset, the default limit is 128 attributes.

OTEL_ATTRIBUTE_VALUE_LENGTH_LIMIT:
Set this environment variable to limit the length of vectors in attributes for a single span, log
record, metric measurement, etc. If unset, there is no limit on the lengths of vectors in attributes.

Value

Not applicable.

See Also

Environment Variables in otelsdk

Examples

To start an R session using the OTLP exporter:
OTEL_TRACES_EXPORTER=http R -q -f script.R

extract_http_context Extract a span context from HTTP headers received from a client

Description

The return value can be used as the parent option when starting a span.

Usage

extract_http_context(headers)

10 gauge_record

Arguments
headers A named list with one or two strings: traceparent is mandatory, and tracestate
is optional.
Value

And otel_span_context object.

See Also

pack_http_context()

Examples

hdr <- otel::pack_http_context()
ctx <- otel::extract_http_context()
ctx$is_valid()

gauge_record Record a value of an OpenTelemetry gauge

Description

Record a value of an OpenTelemetry gauge

Usage

gauge_record(name, value, attributes = NULL, context = NULL, meter = NULL)

Arguments

name Name of the gauge

value Value to record.

attributes Additional attributes to add.

context Span context. If missing the active context is used, if any.

meter Meter object (otel_meter). Otherwise it is passed to get_meter () to get a meter.
Value

The gauge object (otel_gauge), invisibly.

See Also

Other OpenTelemetry metrics instruments: counter_add(), histogram_record(), up_down_counter_add()

Other OpenTelemetry metrics API: counter_add(), histogram_record(), is_measuring_enabled(),
up_down_counter_add()

Getting Started 11

Examples

otel::gauge_record("temperature”, 27)

Getting Started Getting Started

Description

This page is about instrumenting you R package or project for OpenTelemetry. If you want to start
collecting OpenTelemetry data for instrumented packages, see Collecting Telemetry Data in the
otelsdk package.

About OpenTelemetry

OpenTelemetry is an observability framework. OpenTelemetry is a collection of tools, APIs, and
SDKSs used to instrument, generate, collect, and export telemetry data such as metrics, logs, and
traces, for analysis in order to understand your software’s performance and behavior.

For an introduction to OpenTelemetry, see the OpenTelemetry website docs.

The otel and otelsdk R packages

Use the otel package as a dependency if you want to instrument your R package or project for
OpenTelemetry.

Use the otelsdk package to produce OpenTelemetry output from an R package or project that was
instrumented with the otel package.

Complete Example

To instrument your package with otel, you need to do a couple of steps. In this section we show
how to instrument the callr package.

Add the otel package as a dependency:

The first step is to add the otel package as a dependency. otel is a very lightweight package, so may
want to add it as a hard dependency. This has the advantage that you don’t need to check if otel is
installed every time you call an otel function. Add otel to the Imports section in DESCRIPTION:

Imports:
otel

Alternatively, you may add otel as a soft dependency. Add otel to the Suggests section in
DESCRIPTION:

Suggests:
otel

If you add otel in Suggests, then it makes sense to create a helper function that checks if otel is
installed and also that tracing is enabled for the caller. You can put this function in any R file, e.g.
R/utils.Ris a nice place for it:

https://opentelemetry.io/
https://opentelemetry.io/docs/
https://github.com/r-lib/otel
https://github.com/r-lib/otelsdk
https://github.com/r-lib/callr

12

Getting Started

is_otel_tracing <- function() {
requireNamespace("otel”, quietly = TRUE) && otel::is_tracing_enabled()

3

Choose a tracer name:

Every package should have its own tracer with a name that is unique for the package. See
default_tracer_name() for tips on choosing a good tracer name. Set the otel_tracer_name
variable to the tracer name. No need to export this symbol. In callr, we’ll add

otel_tracer_name <- "org.r-lib.callr”

to the R/callr-package.R file.

Create spans for selected functions:
Select the functions you want to add tracing to. It is overkill to add tracing to small functions that
are called lots of times. It makes sense to add spans to the main functions of the package.

The callr package has various ways of starting another R process and then running R code in it.
We’ll add tracing to the

e callr::r(Q)
e callr::remd()
e callr::rscript()

functions first.
We add to callr::r() in eval.R:

if (is_otel_tracing()) {
otel::start_local_active_span(
"callr::r",
attributes = otel::as_attributes(options)
)
}

* We use the is_otel_tracing() helper function, defined above.

e start_local_active_span() starts a span and also activates it. It also sets up an exit han-
dler that ends the span when the caller function (callr::r()) exits.

* options contain a long list of user-provided and other option, we add these to the span as
attributes.

We add essentially the same code to callr::rcmd():

if (is_otel_tracing()) {
otel::start_local_active_span(
"callr::rcmd”,
attributes = otel::as_attributes(options)
)
3

Andto callr::rscript():

Getting Started 13

if (is_otel_tracing()) {
otel::start_local_active_span(
"callr::rscript”,
attributes = otel::as_attributes(options)
)
3

Concurrency:

An instance of the callr::r_session R6 class represents persistent R background processes.
We want to collect all spans from an R process into the same trace. Since the R processes are
running concurrently, their (sub)spans will not form the correct hierarchy if we use the default,
timing-based otel mechanism to organize spans into trees. We need to manage the lifetime and
activation of the spans that represent the R processes manually.

A generic strategy for handling concurrency in otel is:

1. Create a new long lasting span with start_span(). (I.e. not start_local_active_span()!)

2. Assign the returned span into the corresponding object of the concurrent and/or asynchronous
computation. Every span has a finalizer that closes the span.

3. When running code that belongs to the concurrent computation represented by the span,
activate it for a specific R scope by calling with_active_span() or local_active_span().

4. When the concurrent computation ends, close the span manually with its $end() method or
end_span(). (Otherwise it would be only closed at the next garbage collection, assuming
there are no references to it.)

This code goes into the constructor of the r_session object:

if (is_otel_tracing()) {
private$options$otel_session <- otel::start_span(
"callr::r_session”,
attributes = otel::as_attributes(options)
)
3

The finalize () method (the finalizer) gets a call to close the span:

if (is_otel_tracing()) {
private$options$otel_session$end()

}

We also add (sub)spans to other operations, e.g. the read() method gets

if (is_otel_tracing()) {
otel::local_session(private$options$otel_session)
spn <- otel::start_local_active_span("callr::r_session$read”)

3

Testing:
To test your instrumentation, you need to install the otelsdk package and you also need a local or
remote OpenTelemetry collector.

I suggest you use otel-tui, a terminal OpenTelemetry viewer. To configure it, use the http
exporter, see Environment Variables:

https://github.com/r-lib/otelsdk
https://github.com/ymtdzzz/otel-tui

14

Getting Started

OTEL_TRACES_EXPORTER=http R -q

Development mode:

By default otel functions never error, to avoid taking down a production app. For development
this is not ideal, we want to catch errors early. I suggest you always turn on development mode
when instrumenting a package:

OTEL_ENV=dev

Context propagation:

OpenTelemetry supports distributed tracing. A span (context) can be serialized, copied to another
process, and there it can be used to create child spans.

For applications communicating via HTTP the serialized span context is transmitted in HTTP
headers. For our callr example we can copy the context to the R subprocess in environment
variables.

For example in the callr:r() code we may write:

if (is_otel_tracing()) {

otel::start_local_active_span(

"callr::r",

attributes = otel::as_attributes(options)
)
hdrs <- otel::pack_http_context()
names(hdrs) <- toupper(names(hdrs))
options$env[names(hdrs)] <- hdrs

3

options$env contains the environment variables callr will set in the newly started R process.
This is where we need to add the output of pack_http_context(), which contains the serialized
representation of the active span, if there is any.

Additionally, the subprocess needs to pick up the span context from the environment variables.
The callr:::common_hook() internal function contains the code that the subprocess runs at
startup. Here we need to add:

has_otel <- nzchar(Sys.getenv("TRACEPARENT")) &&
requireNamespace("otel”, quietly = TRUE)
assign(envir = env$ __callr_data__~, "has_otel”, has_otel)
if (has_otel) {
hdrs <- as.list(c(
traceparent = Sys.getenv("TRACEPARENT"),
tracestate = Sys.getenv("TRACESTATE"),
baggage = Sys.getenv("BAGGAGE")
))
prtctx <- otel::extract_http_context(hdrs)
reg.finalizer(
env$ __callr_data__",
function(e) e$otel_span$end(),
onexit = TRUE
)

assign(

get_active_span_context 15

envir = env$ __callr_data__",
"otel_span”,
otel::start_span(
"callr subprocess”,
options = list(parent = prtctx)
)
)
i

First we check if the TRACEPARENT environment variable is set. This contains the serialization
of the parent span. If it exists and the otel package is also available, then we extract the span
context from the environment variables, and start a new span that is a child span or the remote
span obtained from the environment variables. We also set up a finalizer that closes this span
when the R process terminates.

Examples

See above

get_active_span_context
Returns the active span context

Description

This is sometimes useful for logs or metrics, to associate logging and metrics reporting with traces.

Usage

get_active_span_context()

Details

Note that logs and metrics instruments automatically use the current span context, so often you
don’t need to call this function explicitly.

Value

The active span context, an otel_span_context object. If there is no active span context, then an
invalid span context is returned, i.e. spc$is_valid() will be FALSE for the returned spc.

Examples

fun <- function() {
otel::start_local_active_span("fun")
fun2()

}
fun2 <- function() {

otel::log("Log message”, span_context = otel::get_active_span_context())

16 get_default_logger_provider

3
fun()

get_default_logger_provider
Get the default logger provider

Description

The logger provider defines how logs are exported when collecting telemetry data. It is unlikely
that you need to call this function directly, but read on to learn how to configure which exporter to
use.

Usage
get_default_logger_provider()

Details

If there is no default set currently, then it creates and sets a default.

The default logger provider is created based on the OTEL_R_LOGS_EXPORTER environment
variable. This environment variable is specifically for R applications with OpenTelemetry support.

If this is not set, then the generic OTEL_LOGS_EXPORTER environment variable is used. This
applies to all applications that support OpenTelemetry and use the OpenTelemetry SDK.

The following values are allowed:

® none: no traces are exported.

* stdout or console: uses otelsdk::logger_provider_stdstream, to write traces to the standard
output.

* stderr: uses otelsdk::logger_provider_stdstream, to write traces to the standard error.

* http or otlp: uses otelsdk::logger_provider_http, to send traces through HTTP, using the
OpenTelemetry Protocol (OTLP).

* otlp/file uses otelsdk::logger_provider_file to write logs to a JSONL file.

* <package>::<provider>: will select the <provider> object from the <package> package
to use as a logger provider. It calls <package>: :<provider>$new() to create the new logger
provider. If this fails for some reason, e.g. the package is not installed, then it throws an error.

Value

The default logger provider, an otel_logger_provider object.

See Also

Other low level logs API: get_logger(), logger_provider_noop, otel_logger, otel_logger_provider

Examples

get_default_logger_provider()

get_default_meter_provider 17

get_default_meter_provider
Get the default meter provider

Description

The meter provider defines how metrics are exported when collecting telemetry data. It is unlikely
that you need to call this function directly, but read on to learn how to configure which exporter to
use.

Usage

get_default_meter_provider()

Details

If there is no default set currently, then it creates and sets a default.

The default meter provider is created based on the OTEL_R_METRICS_EXPORTER environment
variable. This environment variable is specifically for R applications with OpenTelemetry support.

If this is not set, then the generic OTEL_METRICS_EXPORTER environment variable is used.
This applies to all applications that support OpenTelemetry and use the OpenTelemetry SDK.

The following values are allowed:

* none: no metrics are exported.

* stdout or console: uses otelsdk::meter_provider_stdstream, to write metrics to the standard
output.

* stderr: uses otelsdk::meter_provider_stdstream, to write metrics to the standard error.

* http or otlp: uses otelsdk::meter_provider_http, to send metrics through HTTP, using the
OpenTelemetry Protocol (OTLP).

e otlp/file uses otelsdk::meter_provider_file to write metrics to a JSONL file.

» <package>: :<provider>: will select the <provider> object from the <package> package
to use as a meter provider. It calls <package>: :<provider>$new() to create the new meter
provider. If this fails for some reason, e.g. the package is not installed, then it throws an error.

Value

The default meter provider, an otel_meter_provider object.

See Also
Other low level metrics API: get_meter (), meter_provider_noop, otel_counter, otel_gauge,

otel_histogram, otel_meter, otel_meter_provider, otel_up_down_counter

Examples

get_default_meter_provider()

18 get_default_tracer_provider

get_default_tracer_provider
Get the default tracer provider

Description

The tracer provider defines how traces are exported when collecting telemetry data. It is unlikely
that you need to call this function directly, but read on to learn how to configure which exporter to
use.

Usage

get_default_tracer_provider()

Details

If there is no default set currently, then it creates and sets a default.

The default tracer provider is created based on the OTEL_R_TRACES_EXPORTER environment
variable. This environment variable is specifically for R applications with OpenTelemetry support.

If this is not set, then the generic OTEL_TRACES_EXPORTER environment variable is used. This
applies to all applications that support OpenTelemetry and use the OpenTelemetry SDK.

The following values are allowed:

* none: no traces are exported.

* stdout or console: uses otelsdk::tracer_provider_stdstream, to write traces to the standard
output.

* stderr: uses otelsdk::tracer_provider_stdstream, to write traces to the standard error.

* http or otlp: uses otelsdk::tracer_provider_http, to send traces through HTTP, using the
OpenTelemetry Protocol (OTLP).

* otlp/file uses otelsdk::tracer_provider_file to write traces to a JSONL file.

» <package>::<provider>: will select the <provider> object from the <package> package
to use as a tracer provider. It calls <package>: :<provider>$new() to create the new tracer
provider. If this fails for some reason, e.g. the package is not installed, then it throws an error.

Value

The default tracer provider, an otel_tracer_provider object. See otel_tracer_provider for its methods.

See Also
Other low level trace API: get_tracer (), otel_span, otel_span_context,otel_tracer, otel_tracer_provider,

tracer_provider_noop

Examples

get_default_tracer_provider()

get_logger 19

get_logger Get a logger from the default logger provider

Description

Get a logger from the default logger provider

Usage

get_logger(
name = NULL,
minimum_severity = NULL,
version = NULL,
schema_url = NULL,
attributes = NULL,

L

provider = NULL

Arguments

name Name of the new tracer. If missing, then deduced automatically.
minimum_severity
A log level, the minimum severity log messages to log. See log_severity_levels.

version Optional. Specifies the version of the instrumentation scope if the scope has a
version (e.g. R package version). Example value: "1.0.0".

schema_url Optional. Specifies the Schema URL that should be recorded in the emitted
telemetry.
attributes Optional. Specifies the instrumentation scope attributes to associate with emit-

ted telemetry.
Additional arguments are passed to the get_logger () method of the provider.

provider Tracer provider to use. If NULL, then it uses get_default_tracer_provider()
to get a tracer provider.

Value

An otel_logger object.

See Also

Other low level logs API: get_default_logger_provider(), logger_provider_noop, otel_logger,
otel_logger_provider

20 get_meter

Examples

myfun <- function() {
lgr <- otel::get_logger()
otel::log("Log message”, logger = lgr)
3
myfun()

get_meter Get a meter from the default meter provider

Description

Get a meter from the default meter provider

Usage

get_meter(
name = NULL,
version = NULL,
schema_url = NULL,
attributes = NULL,

L

provider = NULL

)
Arguments
name Name of the new tracer. If missing, then deduced automatically.
version Optional. Specifies the version of the instrumentation scope if the scope has a
version (e.g. R package version). Example value: "1.0.0".
schema_url Optional. Specifies the Schema URL that should be recorded in the emitted
telemetry.
attributes Optional. Specifies the instrumentation scope attributes to associate with emit-
ted telemetry.
Additional arguments are passed to the get_meter () method of the provider.
provider Meter provider to use. If NULL, then it uses get_default_meter_provider()
to get a tracer provider.
Value

An otel_meter object.

See Also

Other low level metrics API: get_default_meter_provider(), meter_provider_noop, otel_counter,
otel_gauge, otel_histogram, otel_meter, otel_meter_provider, otel_up_down_counter

get_tracer 21

Examples

myfun <- function() {
mtr <- otel::get_meter()
ctr <- mtr$create_counter(”session-count”)
ctr$add(1)

3

myfun()

get_tracer Get a tracer from the default tracer provider

Description

Calls get_default_tracer_provider() to get the default tracer provider. Then calls its $get_tracer()
method to create a new tracer.

Usage

get_tracer(
name = NULL,
version = NULL,
schema_url = NULL,
attributes = NULL,

L

provider = NULL

)
Arguments

name Name of the new tracer. If missing, then deduced automatically using default_tracer_name().
Make sure you read the manual page of default_tracer_name() before using
this argument.

version Optional. Specifies the version of the instrumentation scope if the scope has a
version (e.g. R package version). Example value: "1.0.0".

schema_url Optional. Specifies the Schema URL that should be recorded in the emitted
telemetry.

attributes Optional. Specifies the instrumentation scope attributes to associate with emit-
ted telemetry.
Additional arguments are passed to the get_tracer () method of the provider.

provider Tracer provider to use. If NULL, then it uses get_default_tracer_provider()

to get a tracer provider.

22 histogram_record

Details

Usually you do not need to call this function directly, because start_local_active_span() calls
it for you.

Calling get_tracer () multiple times with the same name (or same auto-deduced name) will return
the same (internal) tracer object. (Even if the R external pointer objects representing them are
different.)

A tracer is only deleted if its tracer provider is deleted and garbage collected.

Value

An OpenTelemetry tracer, an otel_tracer object.

See Also

Other low level trace API: get_default_tracer_provider(), otel_span, otel_span_context,
otel_tracer, otel_tracer_provider, tracer_provider_noop

Examples

myfun <- function() {
trc <- otel::get_tracer()
spn <- trc$start_span()
on.exit(otel::end_span(spn), add = TRUE)
otel::local_active_span(spn, end_on_exit = TRUE)
3
myfun()

histogram_record Record a value of an OpenTelemetry histogram

Description

Record a value of an OpenTelemetry histogram

Usage

histogram_record(name, value, attributes = NULL, context = NULL, meter = NULL)

Arguments
name Name of the histogram.
value Value to record.
attributes Additional attributes to add.
context Span context. If missing the active context is used, if any.

meter Meter object (otel_meter). Otherwise it is passed to get_meter () to get a meter.

is_logging_enabled 23

Value

The histogram object (otel_histogram), invisibly.

See Also

Other OpenTelemetry metrics instruments: counter_add(), gauge_record(), up_down_counter_add()

Other OpenTelemetry metrics API: counter_add(), gauge_record(), is_measuring_enabled(),
up_down_counter_add()

Examples

otel::histogram_record("response-time”, 0.2)

is_logging_enabled Check whether OpenTelemetry logging is active

Description

This is useful for avoiding computation when logging is inactive.

Usage

is_logging_enabled(severity = "info", logger = NULL)

Arguments
severity Check if logs are emitted at this severity level.
logger Logger object (otel_logger), or a logger name, the instrumentation scope, to pass
to get_logger ().
Details

It calls get_logger () with name and then it calls the logger’s $is_enabled() method.

Value

TRUE is OpenTelemetry logging is active, FALSE otherwise.

See Also

Other OpenTelemetry logs API: log(), log_severity_levels

24 is_measuring_enabled

Examples

fun <- function() {
if (otel::is_logging_enabled()) {
xattr <- calculate_some_extra_attributes()
otel::log("Starting fun", attributes = xattr)

}
...

is_measuring_enabled Check whether OpenTelemetry metrics collection is active

Description

This is useful for avoiding computation when metrics collection is inactive.

Usage

is_measuring_enabled(meter = NULL)

Arguments
meter Meter object (otel_meter), or a meter name, the instrumentation scope, to pass
to get_meter().
Details

It calls get_meter () with name and then it calls the meter’s $is_enabled() method.

Value

TRUE is OpenTelemetry metrics collection is active, FALSE otherwise.

See Also

Other OpenTelemetry metrics API: counter_add(), gauge_record(), histogram_record(), up_down_counter_add()

Examples

fun <- function() {
if (otel::is_measuring_enabled()) {
xattr <- calculate_some_extra_attributes()
otel::counter_add("sessions”, 1, attributes = xattr)

b
...

is_tracing_enabled 25

is_tracing_enabled Check if tracing is active

Description

Checks whether OpenTelemetry tracing is active. This can be useful to avoid unnecessary compu-
tation when tracing is inactive.

Usage

is_tracing_enabled(tracer = NULL)

Arguments
tracer Tracer object (otel_tracer). It can also be a tracer name, the instrumentation
scope, or NULL for determining the tracer name automatically. Passed to get_tracer ()
if not a tracer object.
Details

It calls get_tracer () with name and then it calls the tracer’s $is_enabled() method.

Value

TRUE is OpenTelemetry tracing is active, FALSE otherwise.

See Also

Other OpenTelemetry trace API: Zero Code Instrumentation, end_span(), local_active_span(),
start_local_active_span(), start_span(), tracing-constants, with_active_span()

Examples

fun <- function() {
if (otel::is_tracing_enabled()) {
xattr <- calculate_some_extra_attributes()
otel::start_local_active_span("fun”, attributes = xattr)

3
...

26 local_active_span

local_active_span Activate an OpenTelemetry span for an R scope

Description

Activates the span for the caller (or other) frame.

Usually you need this function for spans created with start_span(), which does not activate the
new span. Usually you don’t need it for spans created with start_local_active_span(), because
it activates the new span automatically.

Usage

local_active_span(span, end_on_exit = FALSE, activation_scope = parent.frame())

Arguments
span The OpenTelemetry span to activate.
end_on_exit Whether to end the span when exiting the activation scope.

activation_scope
The scope to activate the span for, defaults to the caller frame.

Details
When the frame ends, the span is deactivated and the previously active span will be active again, if
there was any.

It is possible to activate the same span for multiple R frames.

Value

Nothing.

See Also

Other OpenTelemetry trace API: Zero Code Instrumentation, end_span(), is_tracing_enabled(),
start_local_active_span(), start_span(), tracing-constants, with_active_span()

Other tracing for concurrent code: with_active_span()

Examples

fun <- function() {
start span, do not activate
spn <- otel::start_span("myfun")
do not leak resources
on.exit(otel::end_span(spn), add = TRUE)
myfun <- function() {
activate span for this function
otel::local_active_span(spn)

log 27

create child span
spn2 <- otel::start_local_active_span("myfun/2")

b

myfun2 <- function() {
activate span for this function
otel::local_active_span(spn)
create child span
spn3 <- otel::start_local_active_span("myfun/3")
}
myfun()
myfun2()
end_span(spn)
3
fun()

log Log an OpenTelemetry log message

Description

Log an OpenTelemetry log message

Usage
log(msg, ..., severity = "info", .envir = parent.frame(), logger = NULL)
log_trace(msg, ..., .envir = parent.frame(), logger = NULL)
log_debug(msg, ..., .envir = parent.frame(), logger = NULL)
log_info(msg, ..., .envir = parent.frame(), logger = NULL)
log_warn(msg, ..., .envir = parent.frame(), logger = NULL)
log_error(msg, ..., .envir = parent.frame(), logger = NULL)
log_fatal(msg, ..., .envir = parent.frame(), logger = NULL)

Arguments
msg Log message, may contain R expressions to evaluate within braces.

Additional arguments are passed to the $1og() method of the logger.

severity Log severity, a string, one of "trace", "trace2", "trace3", "trace4", "debug", "de-

bug2", "debug3", "debug4", "info", "info2", "info3", "info4", "warn", "warn2",

"warn3", "warn4", "error", "error2", "error3", "error4", "fatal", "fatal2", "fatal3",
"fatal4".

.envir Environment to evaluate the interpolated expressions of the log message in.

28 log_severity_levels

logger Logger to use. If not an OpenTelemetry logger object (otel_logger), then it
passed to get_logger () to get a logger.

Details

log_trace() is the same as log() with severity_level "trace".
log_debug() is the same as log() with severity_level "debug".
log_info() is the same as log() with severity_level "info".

log_warn() is the same as log() with severity_level "warn".
log_error) is the same as log() with severity_level "error".

log_fatal() is the same as log() with severity_level "fatal".

Value

The logger, invisibly.

See Also

Other OpenTelemetry logs API: is_logging_enabled(), log_severity_levels

Examples

host <- "my.db.host”
port <- 6667
otel::log("Connecting to database at {host}:{port}")

log_severity_levels OpenTelemetry log severity levels

Description
A named integer vector, the severity levels in numeric form. The names are the severity levels in
text form. otel functions accept both forms as severity levels, but the text form is more readable.
Value

Not applicable.

See Also

Other OpenTelemetry logs API: is_logging_enabled(), log()

Examples

log_severity_levels

meter_provider_noop 29

meter_provider_noop No-op Meter Provider

Description

This is the meter provider (otel_meter_provider) otel uses when metrics collection is disabled.

Details

All methods are no-ops or return objects that are also no-ops.

Value

Not applicable.

See Also
Other low level metrics API: get_default_meter_provider(), get_meter(), otel_counter,

otel_gauge, otel_histogram, otel_meter, otel_meter_provider, otel_up_down_counter

Examples

meter_provider_noop$new()

otel_counter OpenTelemetry Counter Object

Description

otel_meter_provider -> otel_meter -> otel_counter, otel_up_down_counter, otel_histogram, otel_gauge

Details

Usually you do not need to deal with otel_counter objects directly. counter_add() automatically
sets up a meter and creates a counter instrument, as needed.

A counter object is created by calling the create_counter () method of an otel_meter_provider().
You can use the add () method to increment the counter by a positive amount.

In R counters are represented by double values.

Value

Not applicable.

30 otel_gauge

Methods

counter$add():
Increment the counter by a fixed amount.
Usage:
counter$add(value, attributes = NULL, span_context = NULL, ...)

Arguments:
¢ value: Value to increment the counter with.
e attributes: Additional attributes to add.
* span_context: Span context. If missing, the active context is used, if any.

Value:
The counter object itself, invisibly.

See Also

Other low level metrics API: get_default_meter_provider(), get_meter(), meter_provider_noop,
otel_gauge, otel_histogram, otel_meter, otel_meter_provider, otel_up_down_counter

Examples

mp <- get_default_meter_provider()
mtr <- mp$get_meter()

ctr <- mtr$create_counter(”"session")
ctr$add(1)

otel_gauge OpenTelemetry Gauge Object

Description

otel_meter_provider -> otel_meter -> otel_counter, otel_up_down_counter, otel_histogram, otel_gauge

Details

Usually you do not need to deal with otel_gauge objects directly. gauge_record() automatically
sets up a meter and creates a gauge instrument, as needed.

A gauge object is created by calling the create_gauge () method of an otel_meter_provider().
You can use the record() method to record the current value.

In R gauge values are represented by doubles.

Value

Not applicable.

otel_histogram 31

Methods

gauge$record():
Update the statistics with the specified amount.
Usage:
gauge$record(value, attributes = NULL, span_context = NULL, ...)

Arguments:
¢ value: A numeric value. The current absolute value.
e attributes: Additional attributes to add.
* span_context: Span context. If missing, the active context is used, if any.

Value:
The gauge object itself, invisibly.

See Also

Other low level metrics API: get_default_meter_provider(), get_meter(), meter_provider_noop,
otel_counter, otel_histogram, otel_meter, otel_meter_provider, otel_up_down_counter

Examples

mp <- get_default_meter_provider()

mtr <- mp$get_meter()

gge <- mtr$create_gauge("response-time")
gge$record(1.123)

otel_histogram OpenTelemetry Histogram Object

Description

otel_meter_provider -> otel_meter -> otel_counter, otel_up_down_counter, otel_histogram, otel_gauge

Details

Usually you do not need to deal with otel_histogram objects directly. histogram_record() auto-
matically sets up a meter and creates a histogram instrument, as needed.

A histogram object is created by calling the create_histogram() method of an otel_meter_provider().
You can use the record() method to update the statistics with the specified amount.

In R histogram values are represented by doubles.

Value

Not applicable.

32 otel_logger

Methods

histogram$record():
Update the statistics with the specified amount.
Usage:
histogram$record(value, attributes = NULL, span_context = NULL, ...)

Arguments:
¢ value: A numeric value to record.
e attributes: Additional attributes to add.
* span_context: Span context. If missing, the active context is used, if any.

Value:
The histogram object itself, invisibly.

See Also

Other low level metrics API: get_default_meter_provider(), get_meter(), meter_provider_noop,
otel_counter, otel_gauge, otel_meter, otel_meter_provider, otel_up_down_counter

Examples

mp <- get_default_meter_provider()

mtr <- mp$get_meter()

hst <- mtr$create_histogram("”response-time")
hst$record(1.123)

otel_logger OpenTelemetry Logger Object

Description

otel_logger_provider -> otel_logger

Details

Usually you do not need to deal with otel_logger objects directly. log() automatically sets up the
logger for emitting the logs.

A logger object is created by calling the get_logger () method of an otel_logger_provider.
You can use the 1log() method of the logger object to emit logs.

Typically there is a separate logger object for each instrumented R package.

Value

Not applicable.

otel_logger 33

Methods

logger$is_enabled():
Whether the logger is active and emitting logs at a certain severity level.
This is equivalent to the is_logging_enabled() function.
Usage:
logger$is_enabled(severity = "info", event_id = NULL)
Arguments:
* severity: Check if logs are emitted at this severity level.
* event_id: Not implemented yet.

Value:
Logical scalar.

logger$get_minimum_severity():

Get the current minimum severity at which the logger is emitting logs.
Usage:
logger_get_minimum_severity()

Value:
Named integer scalar.

logger$set_minimum_severiry():

Set the minimum severity for emitting logs.
Usage:
logger$set_minimum_severity(minimum_severity)

Arguments:
* minimum_severity: Log severity, a string, one of "trace", "trace2", "trace3", "trace4",
"debug", "debug2", "debug3", "debug4", "info", "info2", "info3", "info4", "warn", "warn2",
"warn3", "warn4", "error", "error2", "error3", "error4", "fatal", "fatal2", "fatal3", "fatal4".

Value:
Nothing.

logger$log():

Log an OpenTelemetry log message.

Usage:

loggers$log(
msg = "",
severity = "info",
span_context = NULL,
span_id = NULL,
trace_id = NULL,
trace_flags = NULL,
timestamp = SYs.time(),
observed_timestamp = NULL,
attributes = NULL,
.envir = parent.frame()

34 otel_logger

Arguments:
* msg: Log message, may contain R expressions to evaluate within braces.

non

* severity: Log severity, a string, one of "trace", "trace2", "trace3", "trace4", "debug", "de-
bug2", "debug3", "debugd", "info", "info2", "info3", "info4", "warn", "warn2", "warn3",
"warn4", "error", "error2", "error3", "errord4", "fatal", "fatal2", "fatal3", "fatal4".

* span_context: An otel_span_context object to associate the log message with a span.

e span_id: Alternatively to span_context, you can also specify span_id, trace_id and
trace_flags to associate a log message with a span.

e trace_id: Alternatively to span_context, you can also specify span_id, trace_id and
trace_flags to associate a log message with a span.

e trace_flags: Alternatively to span_context, you can also specify span_id, trace_id
and trace_flags to associate a log message with a span.

e timestamp: Time stamp, defaults to the current time. This is the time the logged event
occurred.

* observed_timestamp: Observed time stamp, this is the time the event was observed.

e attributes: Optional attributes, see as_attributes() for the possible values.

e .envir: Environment to evaluate the interpolated expressions of the log message in.

Value:
The logger object, invisibly.

logger$trace():
The same as logger$log(), with severity = "trace”.

logger$debug():
The same as logger$log(), with severity = "debug"”.

logger$info():
The same as logger$log(), with severity = "info".

logger$warn():
The same as logger$log(), with severity = "warn”.

logger$error():
The same as logger$log(), with severity = "error”.

logger$fatal():
The same as logger$log(), with severity = "fatal”.

See Also

Other low level logs API: get_default_logger_provider(), get_logger(), logger_provider_noop,
otel_logger_provider

Examples

1p <~ get_default_logger_provider()

lgr <- 1p$get_logger()

platform <- utils::sessionInfo()$platform

lgr$log("This is a log message from {platform}.”, severity = "trace")

otel_logger_provider 35

otel_logger_provider OpenTelemetry Logger Provider Object

Description

otel_logger_provider -> otel_logger

Details
The logger provider defines how logs are exported when collecting telemetry data. It is unlikely
that you need to use logger provider objects directly.
Usually there is a single logger provider for an R app or script.

Typically the logger provider is created automatically, at the first log() call. otel decides which
logger provider class to use based on Environment Variables.

Value

Not applicable.

Implementations
Note that this list is updated manually and may be incomplete.

* logger_provider_noop: No-op logger provider, used when no logs are emitted.
* otelsdk::logger_provider_file: Save logs to a JSONL file.
* otelsdk::logger_provider_http: Send logs to a collector over HTTP/OTLP.

* otelsdk::logger_provider_stdstream: Write logs to standard output or error or to a file. Primar-
ily for debugging.

Methods

logger_provider$get_logger():
Get or create a new logger object.

Usage:

logger_provider$get_logger/(
name = NULL,

version = NULL,

schema_url = NULL,
attributes = NULL

)

Arguments:

* name Logger name. It makes sense to reuse the tracer name as the logger name. See
get_logger () and default_tracer_name().

e version: Optional. Specifies the version of the instrumentation scope if the scope has a
version (e.g. R package version). Example value: "1.0.0".

36 otel_meter

e schema_url: Optional. Specifies the Schema URL that should be recorded in the emitted
telemetry.

e attributes: Optional. Specifies the instrumentation scope attributes to associate with
emitted telemetry. See as_attributes() for allowed values. You can also use as_attributes()
to convert R objects to OpenTelemetry attributes.

Value:
An OpenTelemetry logger (otel_logger) object.

See also:
get_default_logger_provider(), get_logger().
logger_provider$flush():
Force any buffered logs to flush. Logger providers might not implement this method.
Usage:
logger_provider$flush()

Value:
Nothing.

See Also

Other low level logs API: get_default_logger_provider(), get_logger(), logger_provider_noop,
otel_logger

Examples

1p <- otel::get_default_logger_provider()
lgr <- 1p$get_logger()
lgr$is_enabled()

otel_meter OpenTelemetry Meter Object

Description

otel_meter_provider -> otel_meter -> otel_counter, otel_up_down_counter, otel_histogram, otel_gauge

Details

Usually you do not need to deal with otel_meter objects directly. counter_add(), up_down_counter_add(),
histogram_record() and gauge_record() automatically set up the meter and uses it to create in-
struments.

A meter object is created by calling the get_meter () method of an otel_meter_provider.

You can use the create_counter (), create_up_down_counter (), create_histogram(), create_gauge()
methods of the meter object to create instruments.

Typically there is a separate meter object for each instrumented R package.

otel _meter 37

Value

Not applicable.

Methods

meter$is_enabled():
Whether the meter is active and emitting measurements.
This is equivalent to the is_measuring_enabled() function.

Usage:
meter$is_enabled()

Value:
Logical scalar.

meter$create_counter():
Create a new counter instrument.
Usage:
create_counter(name, description = NULL, unit = NULL)

Arguments:
¢ name: Name of the instrument.

* description: Optional description.
e unit: Optional measurement unit. If specified, it should use units from Unified Code for

Units of Measure, according to the OpenTelemetry semantic conventions.

Value:
An OpenTelemetry counter (otel_counter) object.

meter$create_up_down_counter():
Create a new up-down counter instrument.

Usage:
create_up_down_counter(name, description = NULL, unit = NULL)

Arguments:
¢ name: Name of the instrument.

* description: Optional description.
e unit: Optional measurement unit. If specified, it should use units from Unified Code for
Units of Measure, according to the OpenTelemetry semantic conventions.

Value:
An OpenTelemetry counter (otel_up_down_counter) object.

meter$create_histogram():
Create a new histogram.

Usage:
create_histogram(name, description = NULL, unit = NULL)

Arguments:

https://opentelemetry.io/docs/specs/otel/metrics/api/#counter
https://ucum.org/
https://ucum.org/
https://opentelemetry.io/docs/specs/semconv/general/metrics/#instrument-units
https://opentelemetry.io/docs/specs/otel/metrics/api/#updowncounter
https://ucum.org/
https://ucum.org/
https://opentelemetry.io/docs/specs/semconv/general/metrics/#instrument-units
https://opentelemetry.io/docs/specs/otel/metrics/api/#histogram

38 otel_meter_provider

* name: Name of the instrument.

¢ description: Optional description.

e unit: Optional measurement unit. If specified, it should use units from Unified Code for
Units of Measure, according to the OpenTelemetry semantic conventions.

Value:
An OpenTelemetry histogram (otel_histogram) object.

meter$create_gauge():
Create a new gauge.
Usage:
create_gauge(name, description = NULL, unit = NULL)
Arguments:
* name: Name of the instrument.
* description: Optional description.
e unit: Optional measurement unit. If specified, it should use units from Unified Code for
Units of Measure, according to the OpenTelemetry semantic conventions.

Value:
An OpenTelemetry gauge (otel_gauge) object.

See Also

Other low level metrics API: get_default_meter_provider(), get_meter(), meter_provider_noop,
otel_counter, otel_gauge, otel_histogram, otel_meter_provider, otel_up_down_counter

Examples

mp <- get_default_meter_provider()
mtr <- mp$get_meter()

ctr <- mtr$create_counter(”session”)
ctr$add(1)

otel_meter_provider OpenTelemetry meter provider objects

Description

otel_meter_provider -> otel_meter -> otel_counter, otel_up_down_counter, otel_histogram, otel_gauge

Details

The meter provider defines how metrics are exported when collecting telemetry data. It is unlikely
that you need to use meter provider objects directly.

Usually there is a single meter provider for an R app or script.

Typically the meter provider is created automatically, at the first counter_add(), up_down_counter_add(),

histogram_record(), gauge_record() or get_meter() call. otel decides which meter provider
class to use based on Environment Variables.

https://ucum.org/
https://ucum.org/
https://opentelemetry.io/docs/specs/semconv/general/metrics/#instrument-units
https://opentelemetry.io/docs/specs/otel/metrics/api/#gauge
https://ucum.org/
https://ucum.org/
https://opentelemetry.io/docs/specs/semconv/general/metrics/#instrument-units

otel_meter_provider 39

Value

Not applicable.

Implementations
Note that this list is updated manually and may be incomplete.

* meter_provider_noop: No-op meter provider, used when no metrics are emitted.

* otelsdk::meter_provider_file: Save metrics to a JSONL file.

¢ otelsdk::meter_provider_http: Send metrics to a collector over HTTP/OTLP.

* otelsdk::meter_provider_memory: Collect emitted metrics in memory. For testing.

* otelsdk::meter_provider_stdstream: Write metrics to standard output or error or to a file. Pri-
marily for debugging.

Methods

meter_provider$get_meter():
Get or create a new meter object.
Usage:
meter_provider$get_meter(
name = NULL,
version = NULL,
schema_url = NULL,
attributes = NULL
)

Arguments:

¢ name: Meter name, see get_meter().

e version: Optional. Specifies the version of the instrumentation scope if the scope has a
version (e.g. R package version). Example value: "1.0.0".

e schema_url: Optional. Specifies the Schema URL that should be recorded in the emitted
telemetry.

e attributes: Optional. Specifies the instrumentation scope attributes to associate with
emitted telemetry. See as_attributes() for allowed values. You can also use as_attributes()
to convert R objects to OpenTelemetry attributes.

Value:
Returns an OpenTelemetry meter (otel_meter) object.

See also:
get_default_meter_provider(), get_meter().
meter_provider$flush():
Force any buffered metrics to flush. Meter providers might not implement this method.
Usage:
meter_provider$flush()

Value:
Nothing.

40 otel_span

meter_provider$shutdown():

Stop the meter provider. Stops collecting and emitting measurements.

Usage:

meter_provider$shurdown()

Value:
Nothing

See Also

Other low level metrics API: get_default_meter_provider(), get_meter(), meter_provider_noop,
otel_counter, otel_gauge, otel_histogram, otel_meter, otel_up_down_counter

Examples

mp <- otel::get_default_meter_provider()
mtr <- mp$get_meter()
mtr$is_enabled()

otel_span OpenTelemetry Span Object

Description

otel_tracer_provider -> otel_tracer -> otel_span -> otel_span_context

Details

An otel_span object represents an OpenTelemetry span.
Use start_local_active_span() or start_span() to create and start a span.

Call end_span() to end a span explicitly. (See start_local_active_span() and local_active_span()
to end a span automatically.)

Value

Not applicable.

Lifetime

The span starts when it is created in the start_local_active_span() or start_span() call.

The span ends when end_span () is called on it, explicitly or automatically via start_local_active_span()
or local_active_span().

otel_span 41

Activation

After a span is created it may be active or inactively, independently of its lifetime. A live span (i.e.
a span that hasn’t ended yet) may be inactive. While this is less common, a span that has ended may
still be active.

When otel creates a new span, it sets the parent span of the new span to the active span by default.

Automatic spans:
start_local_active_span() creates a new span, starts it and activates it for the caller frame. It
also automatically ends the span when the caller frame exits.

Manual spans:

start_span() creates a new span and starts it, but it does not activate it. You must activate the
span manually using local_active_span() or with_active_span(). You must also end the
span manually with an end_span() call. (Or the end_on_exit argument of local_active_span()
or with_active_span().)

Parent spans

OpenTelemetry spans form a hierarchy: a span can refer to a parent span. A span without a parent
span is called a root span. A trace is a set of connected spans.

When otel creates a new span, it sets the parent span of the new span to the active span by default.
Alternatively, you can set the parent span of the new span manually. You can also make the new

span be a root span, by setting parent = NA in options to the start_local_active_span() or
start_span() call.

Methods

span$add_event():
Add a single event to the span.
Usage:
span$add_event(name, attributes = NULL, timestamp = NULL)

Arguments:

* name: Event name.

e attributes: Attributes to add to the event. See as_attributes() for supported R types.
You may also use as_attributes() to convert an R object to an OpenTelemetry attribute
value.

e timestamp: A base::POSIXct object. If missing, the current time is used.

Value:
The span object itself, invisibly.

span$end():

End the span. Calling this method is equivalent to calling the end_span() function on the span.

Spans created with start_local_active_span() end automatically by default. You must end

every other span manually, by calling end_span, or using the end_on_exit argument of local_active_span()
or with_active_span().

Calling the span$end () method (or end_span()) on a span multiple times is not an error, the first

call ends the span, subsequent calls do nothing.

42

otel_span

Usage:
span$end(options = NULL, status_code = NULL)

Arguments:
» options: Named list of options. Possible entry:
— end_steady_time: A base::POSIXct object that will be used as a steady timer.
* status_code: Span status code to set before ending the span, see the span$set_status()
method for possible values.

Value:
The span object itself, invisibly.

span$get_context():
Get a span’s span context. The span context is an otel_span_context object that can be serialized,
copied to other processes, and it can be used to create new child spans.

Usage:

span$get_context()

Value:
An otel_span_context object.

span$is_recording():
Checks whether a span is recorded. If tracing is off, or the span ended already, or the sampler
decided not to record the trace the span belongs to.

Usage:

span$is_recording()

Value:
A logical scalar, TRUE if the span is recorded.

span$record_exception():

Record an exception (error, usually) event for a span.

If the span was created with start_local_active_span(), or it was ended automatically with
local_active_span() orwith_active_span(), then otel records exceptions automatically, and
you don’t need to call this function manually.

You can still use it to record exceptions that are not R errors.

Usage:
span$record_exception(error_condition, attributes, ...)

Arguments:
e error_condition: An R error object to record.
e attributes: Additional attributes to add to the exception event.
e ...: Passed to the span$add_event () method.

Value:
The span object itself, invisibly.

span$set_attribute():
Set a single attribute. It is better to set attributes at span creation, instead of calling this method
later, since samplers can only make decisions based on attributes present at span creation.

otel_span 43

Usage:
span$set_attribute(name, value)

Arguments:
* name: Attribute name.
e value: Attribute value. See as_attributes() for supported R types. You may also use
as_attributes() to convert an R object to an OpenTelemetry attribute value.

Value:
The span object itself, invisibly.

span$set_status():
Set the status of the span.
If the span was created with start_local_active_span(), or it was ended automatically with
local_active_span() or with_active_span(), then otel sets the status of the span automati-
cally to ok or error, depending on whether an error happened in the frame the span was activated
for.
Otherwise the default span status is unset, and you need to set it manually.
Usage:
span$set_status(status_code, description = NULL)
Arguments:
e status_code: Possible values: unset, ok, error.
* description: Optional description, a string.

Value:
The span itself, invisibly.

span$update_name():
Update the span’s name. Overrides the name give in start_local_active_span() or start_span().
It is undefined whether a sampler will use the original or the new name.
Usage:
span$update_name (name)
Arguments:
* name: String, the new span name.

Value:
The span object itself, invisibly.

See Also

Other low level trace API: get_default_tracer_provider(), get_tracer(), otel_span_context,
otel_tracer, otel_tracer_provider, tracer_provider_noop

Examples

fn <= function() {
trc <- otel::get_tracer("myapp")
spn <- trc$start_span(”"fn")
...

44 otel_span_context

spn$set_attribute("key"”, "value")

...

on.exit(spn$end(status_code = "error"”), add = TRUE)
...

spn$end(status_code = "ok")

3
nQ)

otel_span_context An OpenTelemetry Span Context object

Description

otel_tracer_provider -> otel_tracer -> otel_span -> otel_span_context

Details

This is a representation of a span that can be serialized, copied to other processes, and it can be used
to create new child spans.

Value

Not applicable.

Methods

span_context$get_span_id():
Get the id of the span.

Usage:
span_context$get_span_id()

Value:
String scalar, a span id. For invalid spans it is invalid_span_id.

span_context$get_trace_flags():
Get the trace flags of a span.
See the specification for more details on trace flags.

Usage:
span_context$get_trace_flags()

Value:
A list with entries:
* is_sampled: logical flag, whether the trace of the span is sampled. If FALSE then the caller
is not recording the trace. See details in the specification.
e is_random: logical flag, it specifies how trace ids are generated. See details in the specifi-
cation.

https://w3c.github.io/trace-context/#trace-flags
https://w3c.github.io/trace-context/#sampled-flag
https://w3c.github.io/trace-context/#random-trace-id-flag
https://w3c.github.io/trace-context/#random-trace-id-flag

otel_span_context 45

span_context$get_trace_id():

Get the id of the trace the span belongs to.
Usage:
span_context$get_trace_id()

Value:
A string scalar, a trace id. For invalid spans it is invalid_trace_id.

span_context$is_remote():
Whether the span was propagated from a remote parent.

Usage:
span_context$is_remote()

Value:
A logical scalar.

span_context$is_sampled():
Whether the span is sampled. This is the same as the is_sampled trace flags, see get_trace_flags()
above.

Usage:

span_context$is_sampled()

Value:
Logical scalar.

span_context$is_valid():
Whether the span is valid. Sometimes otel functions return an invalid span or a span context
referring to an invalid span. E.g. get_active_span_context() does that if there is no active
span.
is_valid() checks if the span is valid.
An span id of an invalid span is invalid_span_id.

Usage:

span_context$is_valid()

Value:
A logical scalar.

span_context$to_http_headers():
Serialize the span context into one or more HTTP headers that can be transmitted to other pro-
cesses or servers, to create a distributed trace.

The other process can deserialize these headers into a span context that can be used to create new
remote spans.

Usage:

span_context$to_http_headers()

Value:

A named character vector, the HTTP header representation of the span context. Usually includes
a traceparent header. May include other headers.

46 otel_tracer

See Also

Other low level trace API: get_default_tracer_provider(), get_tracer(), otel_span,otel_tracer,
otel_tracer_provider, tracer_provider_noop

Examples

spc <- get_active_span_context()
spc$get_trace_flags()
spc$get_trace_id()
spc$get_span_id()
spc$is_remote()

spc$is_sampled()

spc$is_valid()
spc$to_http_headers()

otel_tracer OpenTelemetry Tracer Object

Description

otel_tracer_provider -> otel_tracer -> otel_span -> otel_span_context

Details
Usually you do not need to deal with otel_tracer objects directly. start_local_active_span()
(and start_span()) automatically sets up the tracer and uses it to create spans.
A tracer object is created by calling the get_tracer () method of an otel_tracer_provider.
You can use the start_span() method of the tracer object to create a span.

Typically there is a separate tracer object for each instrumented R package.

Value

Not applicable.

Methods

tracer$start_span():
Creates and starts a new span.
It does not activate the new span.
It is equivalent to the start_span() function
Usage:
tracer_start_span(
name = NULL,
attributes = NULL,
links = NULL,
options = NULL

otel tracer 47

Arguments:

* name: Name of the span. If not specified it will be "<NA>".

* attributes: Span attributes. OpenTelemetry supports the following R types as attributes:
‘character, logical, double, integer. You may use as_attributes() to convert other R types
to OpenTelemetry attributes.

* links: A named list of links to other spans. Every link must be an OpenTelemetry span
(otel_span) object, or a list with a span object as the first element and named span attributes
as the rest.

* options: A named list of span options. May include:

start_system_time: Start time in system time.

start_steady_time: Start time using a steady clock.

parent: A parent span or span context. If it is NA, then the span has no parent and it will
be a root span. If it is NULL, then the current context is used, i.e. the active span, if any.
kind: Span kind, one of span_kinds: "internal", "server", "client", "producer"”, "con-
sumer".

Value:
A new otel_span object.

tracer$is_enabled():

Whether the tracer is active and recording traces.

This is equivalent to the is_tracing_enabled() function.
Usage:
tracer$is_enabled()

Value:
Logical scalar.

tracer$flush():
Flush the tracer provider: force any buffered spans to flush. Tracer providers might not implement
this method.

Usage:
tracer$flush()

Value:
Nothing.

See Also

Other low level trace API: get_default_tracer_provider(), get_tracer(),otel_span,otel_span_context,
otel_tracer_provider, tracer_provider_noop

Examples

tp <- get_default_tracer_provider()
trc <- tp$get_tracer()
trc$is_enabled()

48 otel_tracer_provider

otel_tracer_provider OpenTelemetry Tracer Provider Object

Description

otel_tracer_provider -> otel_tracer -> otel_span -> otel_span_context

Details
The tracer provider defines how traces are exported when collecting telemetry data. It is unlikely
that you’d need to use tracer provider objects directly.
Usually there is a single tracer provider for an R app or script.

Typically the tracer provider is created automatically, at the first start_local_active_span() or
start_span() call. otel decides which tracer provider class to use based on Environment Variables.

Value

Not applicable.

Implementations
Note that this list is updated manually and may be incomplete.

e tracer_provider_noop: No-op tracer provider, used when no traces are emitted.

* otelsdk::tracer_provider_file: Save traces to a JSONL file.

* otelsdk::tracer_provider_http: Send traces to a collector over HTTP/OTLP.

* otelsdk::tracer_provider_memory: Collect emitted traces in memory. For testing.

* otelsdk::tracer_provider_stdstream: Write traces to standard output or error or to a file. Pri-
marily for debugging.

Methods

tracer_provider$get_tracer():
Get or create a new tracer object.

Usage:

tracer_provider$get_tracer(
name = NULL,
version = NULL,
schema_url = NULL,
attributes = NULL

)
Arguments:
* name: Tracer name, see get_tracer().

e version: Optional. Specifies the version of the instrumentation scope if the scope has a
version (e.g. R package version). Example value: "1.0.0".

otel_up_down_counter 49

e schema_url: Optional. Specifies the Schema URL that should be recorded in the emitted
telemetry.

e attributes: Optional. Specifies the instrumentation scope attributes to associate with
emitted telemetry. See as_attributes() for allowed values. You can also use as_attributes()
to convert R objects to OpenTelemetry attributes.

Value:
Returns an OpenTelemetry tracer (otel_tracer) object.

See also:
get_default_tracer_provider(), get_tracer().
tracer_provider$flush():
Force any buffered spans to flush. Tracer providers might not implement this method.

Usage:
tracer_provider$flush()

Value:
Nothing.

See Also

Other low level trace API: get_default_tracer_provider(), get_tracer(), otel_span, otel_span_context,
otel_tracer, tracer_provider_noop

Examples

tp <- otel::get_default_tracer_provider()
trc <- tp$get_tracer()
trc$is_enabled()

otel_up_down_counter OpenTelemetry Up-Down Counter Object

Description

otel_meter_provider -> otel_meter -> otel_counter, otel_up_down_counter, otel_histogram, otel_gauge

Details

Usually you do not need to deal with otel_up_down_counter objects directly. up_down_counter_add()
automatically sets up a meter and creates an up-down counter instrument, as needed.

An up-down counter object is created by calling the create_up_down_counter () method of an
otel_meter_provider().

You can use the add() method to increment or decrement the counter.

In R up-down counters are represented by double values.

50 pack_http_context

Value

Not applicable.

Methods

up_down_counter$add():
Increment or decrement the up-down counter by a fixed amount.
Usage:
up_down_counter$add(value, attributes = NULL, span_context = NULL, ...)
Arguments:
* value: Value to increment of decrement the up-down counter with.
* attributes: Additional attributes to add.
* span_context: Span context. If missing, the active context is used, if any.

Value:
The up-down counter object itself, invisibly.

See Also

Other low level metrics APIL: get_default_meter_provider(), get_meter(), meter_provider_noop,
otel_counter, otel_gauge, otel_histogram, otel_meter, otel_meter_provider

Examples

mp <- get_default_meter_provider()
mtr <- mp$get_meter()
ctr <- mtr$create_up_down_counter("”session")

ctr$add(1)
pack_http_context Pack the currently active span context into standard HTTP Open-
Telemetry headers
Description

The returned headers can be sent over HTTP, or set as environment variables for subprocesses.

Usage

pack_http_context()

Value

A named character vector, with lowercase names. It might be an empty vector, e.g. if tracing is
disabled.

start_local_active_span 51

See Also

extract_http_context()

Examples

hdr <- otel::pack_http_context()
ctx <- otel::extract_http_context()
ctx$is_valid()

start_local_active_span
Start and activate a span

Description

Creates, starts and activates an OpenTelemetry span.

Usually you want this functions instead of start_span(), which does not activate the new span.

Usage

start_local_active_span(
name = NULL,
attributes = NULL,
links = NULL,
options = NULL,
tracer = NULL,
activation_scope = parent.frame(),
end_on_exit = TRUE

)
Arguments

name Name of the span. If not specified it will be "<NA>".

attributes Span attributes. OpenTelemetry supports the following R types as attributes:
‘character, logical, double, integer. You may use as_attributes() to convert
other R types to OpenTelemetry attributes.

links A named list of links to other spans. Every link must be an OpenTelemetry span
(otel_span) object, or a list with a span object as the first element and named
span attributes as the rest.

options A named list of span options. May include:

* start_system_time: Start time in system time.

e start_steady_time: Start time using a steady clock.

* parent: A parent span or span context. If it is NA, then the span has no
parent and it will be a root span. If it is NULL, then the current context is
used, i.e. the active span, if any.

52 start_span

e kind: Span kind, one of span_kinds: "internal", "server", "client", "pro-

ducer", "consumer".
Additional arguments are passed to the start_span() method of the tracer.

tracer A tracer object or the name of the tracer to use, see get_tracer (). If NULL then
default_tracer_name() is used.

activation_scope
The R scope to activate the span for. Defaults to the caller frame.

end_on_exit Whether to also end the span when the activation scope exits.

Details

If end_on_exit is TRUE (the default), then it also ends the span when the activation scope finishes.

Value

The new OpenTelemetry span object (of class otel_span), invisibly. See otel_span for information
about the returned object.

See Also

Other OpenTelemetry trace API: Zero Code Instrumentation, end_span(), is_tracing_enabled(),
local_active_span(), start_span(), tracing-constants, with_active_span()

Examples

fn1 <- function() {
otel::start_local_active_span("fnl1")
fn2Q)

3

fn2 <- function() {
otel::start_local_active_span("”fn2")

3

n1 ()

start_span Start an OpenTelemetry span.

Description

Creates a new OpenTelemetry span and starts it, without activating it.

Usually you want start_local_active_span() instead of start_span. start_local_active_span()
also activates the span for the caller frame, and ends the span when the caller frame exits.

start_span 53

Usage

start_span(
name = NULL,
attributes = NULL,
links = NULL,
options = NULL,

L

tracer = NULL

)
Arguments

name Name of the span. If not specified it will be "<NA>".

attributes Span attributes. OpenTelemetry supports the following R types as attributes:
‘character, logical, double, integer. You may use as_attributes() to convert
other R types to OpenTelemetry attributes.

links A named list of links to other spans. Every link must be an OpenTelemetry span
(otel_span) object, or a list with a span object as the first element and named
span attributes as the rest.

options A named list of span options. May include:

e start_system_time: Start time in system time.

* start_steady_time: Start time using a steady clock.

e parent: A parent span or span context. If it is NA, then the span has no
parent and it will be a root span. If it is NULL, then the current context is
used, i.e. the active span, if any.

* kind: Span kind, one of span_kinds: "internal", "server", "client", "pro-
ducer", "consumer".

Additional arguments are passed to the start_span() method of the tracer.
tracer A tracer object or the name of the tracer to use, see get_tracer (). If NULL then
default_tracer_name() is used.
Details

Only use start_span() is you need to manage the span’s activation manually. Otherwise use
start_local_active_span().

You must end the span by calling end_span(). Alternatively you can also end it with local_active_span()
or with_active_span() by setting end_on_exit = TRUE.

It is a good idea to end spans created with start_span() in an base: :on.exit() call.

Value

An OpenTelemetry span (otel_span).

See Also

Other OpenTelemetry trace API: Zero Code Instrumentation, end_span(), is_tracing_enabled(),
local_active_span(), start_local_active_span(), tracing-constants,with_active_span()

54 tracer_provider_noop

Examples

fun <- function() {
start span, do not activate
spn <- otel::start_span("myfun")
do not leak resources
on.exit(otel::end_span(spn), add = TRUE)
myfun <- function() {
activate span for this function
otel::local_active_span(spn)
create child span
spn2 <- otel::start_local_active_span("myfun/2")

3

myfun2 <- function() {
activate span for this function
otel::local_active_span(spn)
create child span
spn3 <- otel::start_local_active_span("myfun/3")
}
myfun()
myfun2()
end_span(spn)
3
fun()

tracer_provider_noop No-op tracer provider

Description

This is the tracer provider (otel_tracer_provider) otel uses when tracing is disabled.

Details

All methods are no-ops or return objects that are also no-ops.

Value

Not applicable.

See Also

Other low level trace API: get_default_tracer_provider(), get_tracer(), otel_span, otel_span_context,
otel_tracer, otel_tracer_provider

Examples

tracer_provider_noop$new()

tracing-constants 55

tracing-constants OpenTelemetry tracing constants

Description

Various constants related OpenTelemetry tracing.

Usage

invalid_trace_id
invalid_span_id
span_kinds

span_status_codes

Details

invalid_trace_id:

invalid_trace_idis astring scalar, an invalid trace id. If there is no active span, then get_active_span_context ()
returns a span context that has an invalid trace id.

invalid_span_id:
invalid_span_idis a string scalar, an invalid span id. If there is no active span, then get_active_span_context()
returns a span context that has an invalid span id.

span_kinds:

span_kinds is a character vector listing all possible span kinds. See the OpenTelemetry specifi-
cation for when to use which.

span_status_codes:

span_status_codes is a character vector listing all possible span status codes. You can set the
status code of a a span with the set_status() method of otel_span objects. If not set explicitly,
and the span is ended automatically (by start_local_active_span(), local_active_span()
or with_active_span()), then otel sets the status automatically to "ok" or "error", depending on
whether the span ended during handling an error.

Value

Not applicable.

See Also

Other OpenTelemetry trace API: Zero Code Instrumentation, end_span(), is_tracing_enabled(),
local_active_span(), start_local_active_span(), start_span(), with_active_span()

https://opentelemetry.io/docs/specs/otel/trace/api/#spankind
https://opentelemetry.io/docs/specs/otel/trace/api/#spankind

56 up_down_counter_add

Examples

invalid_trace_id
invalid_span_id
span_kinds
span_status_codes

up_down_counter_add Increase or decrease an OpenTelemetry up-down counter

Description

Increase or decrease an OpenTelemetry up-down counter

Usage
up_down_counter_add(
name,
value = 1L,

attributes = NULL,
context = NULL,

meter = NULL

)
Arguments

name Name of the up-down counter.

value Value to add to or subtract from the counter, defaults to 1.

attributes Additional attributes to add.

context Span context. If missing the active context is used, if any.

meter Meter object (otel_meter). Otherwise it is passed to get_meter () to get a meter.
Value

The up-down counter object (otel_up_down_counter), invisibly.

See Also

Other OpenTelemetry metrics instruments: counter_add(), gauge_record(), histogram_record()

Other OpenTelemetry metrics API: counter_add(), gauge_record(), histogram_record(), is_measuring_enabled()

Examples

otel: :up_down_counter_add("session-count”, 1)

with_active_span 57

with_active_span Evaluate R code with an active OpenTelemetry span

Description

Activates the span for evaluating an R expression.
Usually you need this function for spans created with start_span(), which does not activate the
new span. Usually you don’t need it for spans created with start_local_active_span(), because
it activates the new span automatically.

Usage

with_active_span(span, expr, end_on_exit = FALSE)

Arguments

span The OpenTelemetry span to activate.

expr R expression to evaluate.

end_on_exit Whether to end after evaluating the R expression.
Details

After expr is evaluated (or an error occurs), the span is deactivated and the previously active span
will be active again, if there was any.

It is possible to activate the same span for multiple R frames.

Value

The return value of expr.

See Also

Other OpenTelemetry trace API: Zero Code Instrumentation, end_span(), is_tracing_enabled(),
local_active_span(), start_local_active_span(), start_span(), tracing-constants

Other tracing for concurrent code: local_active_span()

Examples

fun <- function() {
start span, do not activate
spn <- otel::start_span("myfun")
do not leak resources
on.exit(otel::end_span(spn), add = TRUE)
myfun <- function() {
otel::with_active_span(spn, {
create child span
spn2 <- otel::start_local_active_span("myfun/2")

58 Zero Code Instrumentation

bl
b

myfun2 <- function() {
otel::with_active_span(spn, {
create child span
spn3 <- otel::start_local_active_span("myfun/3")
»
}
myfun()
myfun2()
end_span(spn)
}
fun()

Zero Code Instrumentation
Zero Code Instrumentation

Description

otel supports zero-code instrumentation (ZCI) via the OTEL_INSTRUMENT_R_PKGS environment vari-
able. Set this to a comma separated list of package names, the packages that you want to instrument.
Then otel will hook up base: :trace() to produce OpenTelemetry output from every function of
these packages.

Details

By default all functions of the listed packages are instrumented. To instrument a subset of all
functions set the OTEL_INSTRUMENT_R_PKGS_<PKG>_INCLUDE environment variable to a list of glob
expressions. <PKG> is the package name in all capital letters. Only functions that match to at least
one glob expression will be instrumented.

To exclude functions from instrumentation, set the OTEL _INSTRUMENT _R_PKGS_<PKG>_EXCLUDE en-
vironment variable to a list of glob expressions. <PKG> is the package name in all capital letters.
Functions that match to at least one glob expression will not be instrumented. Inclusion globs are
applied before exclusion globs.

Caveats:
If the user calls base: :trace() on an instrumented function, that deletes the instrumentation,
since the second base: : trace() call overwrites the first.

Value

Not applicable.

See Also

Environment Variables

Other OpenTelemetry trace API: end_span(), is_tracing_enabled(), local_active_span(),
start_local_active_span(), start_span(), tracing-constants, with_active_span()

Zero Code Instrumentation

Examples

To run an R script with ZCI:
OTEL_TRACES_EXPORTER=http OTEL_INSTRUMENT_R_PKGS=dplyr,tidyr R -q -f script.R

59

Index

* OpenTelemetry logs API
is_logging_enabled, 23
log, 27
log_severity_levels, 28

* OpenTelemetry metrics API
counter_add, 4
gauge_record, 10
histogram_record, 22
is_measuring_enabled, 24
up_down_counter_add, 56

* OpenTelemetry metrics instruments
counter_add, 4
gauge_record, 10
histogram_record, 22
up_down_counter_add, 56

*x OpenTelemetry trace API
end_span, 6
is_tracing_enabled, 25
local_active_span, 26
start_local_active_span, 51
start_span, 52
tracing-constants, 55
with_active_span, 57
Zero Code Instrumentation, 58

+ datasets
log_severity_levels, 28
meter_provider_noop, 29
tracer_provider_noop, 54
tracing-constants, 55

+ low level logs API
get_default_logger_provider, 16
get_logger, 19
otel_logger, 32
otel_logger_provider, 35

* low level metrics API
get_default_meter_provider, 17
get_meter, 20
meter_provider_noop, 29
otel_counter, 29

60

otel_gauge, 30
otel_histogram, 31
otel_meter, 36
otel_meter_provider, 38
otel_up_down_counter, 49
+ low level trace API
get_default_tracer_provider, 18
get_tracer, 21
otel_span, 40
otel_span_context, 44
otel_tracer, 46
otel_tracer_provider, 48
tracer_provider_noop, 54
* tracing for concurrent code
local_active_span, 26
with_active_span, 57

Collecting Telemetry Data, 1/

as_attributes, 3
as_attributes(), 34, 36, 39, 41, 43,47, 49,

51,53
base::on.exit(), 53
base: :POSIXct, 41, 42
base: :topenv(), 5
base: :trace(), 58

counter_add, 4, 10, 23, 24, 56
counter_add(), 29, 36, 38

default_tracer_name, 4
default_tracer_name(), 8, 12, 21, 35, 52, 53

end_span, 6, 25, 26, 52, 53, 55, 57, 58

end_span(), 13,40, 41, 53

Environment Variables, 5,7,7,9, 13, 35,
38, 48, 58

extract_http_context, 9

extract_http_context(), 51

INDEX

gauge_record, 4, 10, 23, 24, 56
gauge_record(), 30, 36, 38
get_active_span_context, 15
get_active_span_context(), 45, 55
get_default_logger_provider, 16, 19, 34,
36
get_default_logger_provider(), 8, 36
get_default_meter_provider, 17, 20,
29-32, 38, 40, 50
get_default_meter_provider(), &, 20, 39
get_default_tracer_provider, 18, 22, 43,
46, 47,49, 54
get_default_tracer_provider(),§, 19, 21,
49
get_logger, 16, 19, 34, 36
get_logger(), 5, 23, 28, 35, 36
get_meter, 17, 20, 29-32, 38, 40, 50
get_meter(), 4, 5, 10, 22, 24, 38, 39, 56
get_tracer, 18, 21, 43,46, 47, 49, 54
get_tracer(), 5, 25,48, 49, 52, 53
Getting Started, 11
gettingstarted (Getting Started), 11

histogram_record, 4, 10, 22, 24, 56
histogram_record(), 31, 36, 38

invalid_span_id, 44, 45
invalid_span_id (tracing-constants), 55
invalid_trace_id, 45
invalid_trace_id (tracing-constants), 55
is_logging_enabled, 23, 28
is_logging_enabled(), 33
is_measuring_enabled, 4, 10, 23, 24, 56
is_measuring_enabled(), 37
is_tracing_enabled, 6, 25, 26, 52, 53, 55,
57,58
is_tracing_enabled(), 47

local_active_span, 6, 25, 26, 52, 53, 55, 57,
58

local_active_span(), 6, 13,40-43, 53, 55

log, 23,27, 28

log(), 32,35

log_debug (log), 27

log_error (log), 27

log_fatal (log), 27

log_info (log), 27

log_severity_levels, 19, 23, 28, 28

log_trace (log), 27

61

log_warn (log), 27
logger_provider_noop, 16, 19, 34-36

meter_provider_noop, 17, 20, 29, 30-32,
3840, 50

otel_counter, 4, 17, 20, 29, 29, 30-32,
36-38, 40, 49, 50
otel_gauge, 10, 17, 20, 29, 30, 30, 31, 32, 36,
38, 40, 49, 50
otel_histogram, 17, 20, 23, 29-31, 31, 36,
38, 40, 49, 50
otel_logger, 3, 16, 19, 23, 28, 32, 32, 35, 36
otel_logger_provider, 16, 19, 32, 34, 35, 35
otel_meter, 4, 10, 17, 20, 22, 24, 29-32, 36,
36, 38-40, 49, 50, 56
otel_meter_provider, 17, 20, 29-32, 36, 38,
38,49, 50
otel_meter_provider(), 29-31, 49
otel_span, 18, 22, 40, 40, 44, 4649, 51-55
otel_span_context, 10, 15, 18, 22, 34, 40,
4244, 44, 4649, 54
otel_tracer, 3, 18, 22, 25, 40, 43, 44, 46, 46,
48, 49, 54
otel_tracer_name (default_tracer_name),
4
otel_tracer_provider, 18, 22, 40, 43, 44,
4648, 48, 54
otel_up_down_counter, 17, 20, 29-32,
36-38, 40, 49, 49, 56
otelsdk: :logger_provider_file, 16, 35
otelsdk: :logger_provider_http, 16, 35
otelsdk: :logger_provider_stdstream, /6,
35
otelsdk: :meter_provider_file, 17, 39
otelsdk: :meter_provider_http, 17, 39
otelsdk: :meter_provider_memory, 39
otelsdk: :meter_provider_stdstream, 17,
39
otelsdk: :tracer_provider_file, I8, 48
otelsdk: :tracer_provider_http, 18, 48
otelsdk: :tracer_provider_memory, 48
otelsdk: :tracer_provider_stdstream, I8,
48

pack_http_context, 50
pack_http_context(), 10, 14

setup_default_logger_provider

62

(get_default_logger_provider),
16
setup_default_meter_provider
(get_default_meter_provider),
17
setup_default_tracer_provider
(get_default_tracer_provider),
18
span_kinds, 47, 52, 53
span_kinds (tracing-constants), 55
span_status_codes (tracing-constants),
55
start_local_active_span, 6, 25, 26, 51, 53,
55,57, 58
start_local_active_span(), 6, 12, 13, 22,
26,40-43,46, 48, 52, 53, 55,57
start_span, 6, 25, 26, 52,52, 55, 57, 58
start_span(), 13, 26,40, 41,43, 46,48, 51
57

tracer_provider_noop, I8, 22, 43, 4649,
54
tracing-constants, 55

up_down_counter_add, 4, 10, 23, 24, 56
up_down_counter_add(), 36, 38, 49
utils::capture.output(), 3

with_active_span, 6, 25, 26, 52, 53, 55, 57,
58
with_active_span(), 6, 13,41-43,53, 55

Zero Code Instrumentation, 8, 58

INDEX

	as_attributes
	counter_add
	default_tracer_name
	end_span
	Environment Variables
	extract_http_context
	gauge_record
	Getting Started
	get_active_span_context
	get_default_logger_provider
	get_default_meter_provider
	get_default_tracer_provider
	get_logger
	get_meter
	get_tracer
	histogram_record
	is_logging_enabled
	is_measuring_enabled
	is_tracing_enabled
	local_active_span
	log
	log_severity_levels
	meter_provider_noop
	otel_counter
	otel_gauge
	otel_histogram
	otel_logger
	otel_logger_provider
	otel_meter
	otel_meter_provider
	otel_span
	otel_span_context
	otel_tracer
	otel_tracer_provider
	otel_up_down_counter
	pack_http_context
	start_local_active_span
	start_span
	tracer_provider_noop
	tracing-constants
	up_down_counter_add
	with_active_span
	Zero Code Instrumentation
	Index

