The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
olsrr offers tools for detecting violation of standard regression assumptions. Here we take a look at residual diagnostics. The standard regression assumptions include the following about residuals/errors:
Graph for detecting violation of normality assumption.
Test for detecting violation of normality assumption.
## -----------------------------------------------
## Test Statistic pvalue
## -----------------------------------------------
## Shapiro-Wilk 0.9366 0.0600
## Kolmogorov-Smirnov 0.1152 0.7464
## Cramer-von Mises 2.8122 0.0000
## Anderson-Darling 0.5859 0.1188
## -----------------------------------------------
Correlation between observed residuals and expected residuals under normality.
## [1] 0.970066
It is a scatter plot of residuals on the y axis and fitted values on the x axis to detect non-linearity, unequal error variances, and outliers.
Characteristics of a well behaved residual vs fitted plot:
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.