The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The {oeli}
package offers a collection of handy
functions that I found useful while developing R packages. Perhaps
you’ll find them helpful too!
The released package version can be installed from CRAN via:
install.packages("oeli")
The package includes helpers for various tasks and objects. Some demos are shown below. Click the headings for reference pages with documentation on all available helpers in each category.
The package has density and sampling functions for distributions not in base R, such as Dirichlet, multivariate normal, truncated normal, and Wishart.
ddirichlet(x = c(0.2, 0.3, 0.5), concentration = 1:3)
#> [1] 4.5
rdirichlet(concentration = 1:3)
#> [1] 0.1273171 0.5269401 0.3457428
For faster computation, Rcpp implementations are also available:
::microbenchmark(
microbenchmark"R" = rmvnorm(mean = c(0, 0, 0), Sigma = diag(3)),
"Rcpp" = rmvnorm_cpp(mean = c(0, 0, 0), Sigma = diag(3))
)#> Unit: microseconds
#> expr min lq mean median uq max neval
#> R 200.5 208.25 263.396 217.10 234.35 2154.7 100
#> Rcpp 2.7 2.90 5.386 4.05 4.40 72.0 100
Retrieving default arguments of a function
:
<- function(a, b = 1, c = "", ...) { }
f function_defaults(f)
#> $b
#> [1] 1
#>
#> $c
#> [1] ""
Create all possible permutations of vector elements:
permutations(LETTERS[1:3])
#> [[1]]
#> [1] "A" "B" "C"
#>
#> [[2]]
#> [1] "A" "C" "B"
#>
#> [[3]]
#> [1] "B" "A" "C"
#>
#> [[4]]
#> [1] "B" "C" "A"
#>
#> [[5]]
#> [1] "C" "A" "B"
#>
#> [[6]]
#> [1] "C" "B" "A"
Quickly have a basic logo for your new package:
package_logo("my_package", brackets = TRUE, use_logo = FALSE)
How to print a matrix
without filling up the entire
console?
<- matrix(rnorm(10000), ncol = 100, nrow = 100)
x print_matrix(x, rowdots = 4, coldots = 4, digits = 2, label = "what a big matrix")
#> what a big matrix : 100 x 100 matrix of doubles
#> [,1] [,2] [,3] ... [,100]
#> [1,] 2.39 0.3 -0.48 ... 0.56
#> [2,] -1.33 0.62 0.37 ... -1.21
#> [3,] -0.03 -0.43 1.71 ... 0.07
#> ... ... ... ... ... ...
#> [100,] 0.14 -0.16 2.49 ... -1.58
And what about a data.frame
?
<- data.frame(x = rnorm(1000), y = LETTERS[1:10])
x print_data.frame(x, rows = 7, digits = 0)
#> x y
#> 1 0 A
#> 2 -1 B
#> 3 0 C
#> 4 -1 D
#> < 993 rows hidden >
#>
#> 998 -1 H
#> 999 -1 I
#> 1000 0 J
Let’s simulate a Markov chain:
<- sample_transition_probability_matrix(dim = 3)
Gamma simulate_markov_chain(Gamma = Gamma, T = 20)
#> [1] 2 1 1 3 1 1 2 2 3 2 2 2 2 2 1 1 1 1 1 3
The group_data.frame()
function groups a given
data.frame
based on the values in a specified column:
<- data.frame("label" = c("A", "B"), "number" = 1:10)
df group_data.frame(df = df, by = "label")
#> $A
#> label number
#> 1 A 1
#> 3 A 3
#> 5 A 5
#> 7 A 7
#> 9 A 9
#>
#> $B
#> label number
#> 2 B 2
#> 4 B 4
#> 6 B 6
#> 8 B 8
#> 10 B 10
Is my matrix a proper transition probability matrix?
<- diag(4)
matrix 1, 2] <- 1
matrix[check_transition_probability_matrix(matrix)
#> [1] "Must have row sums equal to 1"
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.