The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Below example shows the step by step implementation of nonet_ensemble and nonet_plot functions in the context of regression. We have used Bank Note authentication data set to predict the output class variable using linear regression model. Predictions from first linear regression model and second linear regression model are being used as inputs to the nonet_ensemble in the list form.
Let’s start:
library(caret)
library(ggplot2)
library(nonet)
dataframe <- data.frame(banknote_authentication)
head(dataframe)
## variance skewness curtosis entropy class
## 1 3.62160 8.6661 -2.8073 -0.44699 0
## 2 4.54590 8.1674 -2.4586 -1.46210 0
## 3 3.86600 -2.6383 1.9242 0.10645 0
## 4 3.45660 9.5228 -4.0112 -3.59440 0
## 5 0.32924 -4.4552 4.5718 -0.98880 0
## 6 4.36840 9.6718 -3.9606 -3.16250 0
index <- createDataPartition(dataframe$class, p=0.75, list=FALSE)
trainSet <- dataframe[ index,]
testSet <- dataframe[-index,]
control <- rfeControl(functions = rfFuncs,
method = "repeatedcv",
repeats = 3,
verbose = FALSE)
outcomeName <- 'entropy'
predictors <- c("variance", "skewness", "class")
banknote_lm_first <- train(trainSet[,predictors],trainSet[,outcomeName],method='lm')
predictions_lm_first <- predict.train(object=banknote_lm_first, testSet[,predictors])
index <- createDataPartition(dataframe$class, p=0.75, list=FALSE)
trainSet <- dataframe[ index,]
testSet <- dataframe[-index,]
control <- rfeControl(functions = rfFuncs,
method = "repeatedcv",
repeats = 3,
verbose = FALSE)
outcomeName <- 'entropy'
predictors <- c("curtosis", "skewness", "class")
banknote_lm_second <- train(trainSet[,predictors],trainSet[,outcomeName],method='lm')
predictions_lm_second <- predict.train(object=banknote_lm_second, testSet[,predictors])
Stack_object <- list(predictions_lm_first, predictions_lm_second)
names(Stack_object) <- c("lm_first", "lm_second")
Now we need to apply the nonet_ensemble method by supplying list object and best model name as input. Note that We have not provided training or test outcome labels to compute the weights in the weighted average ensemble method, which is being used inside the none_ensemble. Thus it uses best models prediction to compute the weights in the weighted average ensemble.
prediction_nonet <- nonet_ensemble(Stack_object, "lm_first")
Actual_Pred <- data.frame(cbind(actuals = testSet[,outcomeName], predictions = prediction_nonet))
head(Actual_Pred)
## actuals predictions
## 1 -0.44699 -1.869567
## 17 0.58619 1.340655
## 21 -0.48708 -1.994411
## 25 -3.74830 -1.780209
## 26 -2.87150 -1.227252
## 28 -3.74050 -3.537978
accuracy <- cor(Actual_Pred)
accuracy
## actuals predictions
## actuals 1.00000000 0.09811443
## predictions 0.09811443 1.00000000
Results can be plotted using the nonet_plot function. nonet_plot is being designed to provided different plot_type options to the user so that one can plot different visualization based on their needs.
plot_first <- nonet_plot(Actual_Pred$actuals, Actual_Pred$predictions, Actual_Pred, plot_type = "hist")
plot_first
plot_second <- nonet_plot(Actual_Pred$predictions, Actual_Pred$actuals, Actual_Pred, plot_type = "hist")
plot_second
Above it can be seen that nonet_ensemble and nonet_plot can serve in a way that one do not need to worry about the outcome variables labels to compute the weights of weighted average ensemble solution.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.