The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
# Load ECLS-K (2011) data
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the
# starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning)
xstarts <- mean(baseT)
paraMed2_BLS <- c(
"muX", "phi11", "alphaM1", "alphaMr", "alphaM2", "mugM",
paste0("psi", c("M1M1", "M1Mr", "M1M2", "MrMr", "MrM2", "M2M2"), "_r"),
"alphaY1", "alphaYr", "alphaY2", "mugY",
paste0("psi", c("Y1Y1", "Y1Yr", "Y1Y2", "YrYr", "YrY2", "Y2Y2"), "_r"),
paste0("beta", rep(c("M", "Y"), each = 3), rep(c(1, "r", 2), 2)),
paste0("beta", c("M1Y1", "M1Yr", "M1Y2", "MrYr", "MrY2", "M2Y2")),
"muetaM1", "muetaMr", "muetaM2", "muetaY1", "muetaYr", "muetaY2",
paste0("Mediator", c("11", "1r", "12", "rr", "r2", "22")),
paste0("total", c("1", "r", "2")),
"residualsM", "residualsY", "residualsYM"
)
Med2_LGCM_BLS <- getMediation(
dat = RMS_dat0, t_var = rep("T", 2), y_var = "M", m_var = "R",
x_type = "baseline", x_var = "ex1", curveFun = "bilinear spline",
records = list(1:9, 1:9), res_scale = c(0.1, 0.1), res_cor = 0.3,
paramOut = TRUE, names = paraMed2_BLS
)
Med2_LGCM_BLS@Estimates
#> Name Estimate SE
#> 1 muX 0.0000 0.0447
#> 2 phi11 0.9980 0.0630
#> 3 alphaM1 2.1134 0.0246
#> 4 alphaMr 111.8319 0.7841
#> 5 alphaM2 0.6878 0.0134
#> 6 mugM 26.3108 0.2453
#> 7 psiM1M1_r 0.1935 0.0173
#> 8 psiM1Mr_r 4.6661 0.4371
#> 9 psiM1M2_r -0.0278 0.0066
#> 10 psiMrMr_r 226.5296 15.3549
#> 11 psiMrM2_r -1.9011 0.2145
#> 12 psiM2M2_r 0.0341 0.0045
#> 13 alphaY1 0.9622 0.0678
#> 14 alphaYr 19.0900 3.1871
#> 15 alphaY2 0.3800 0.2432
#> 16 mugY 34.7042 0.3575
#> 17 psiY1Y1_r 0.0553 0.0062
#> 18 psiY1Yr_r 1.7819 0.1920
#> 19 psiY1Y2_r -0.0078 0.0043
#> 20 psiYrYr_r 104.2707 7.8922
#> 21 psiYrY2_r -0.7595 0.1566
#> 22 psiY2Y2_r 0.0235 0.0052
#> 23 betaM1 0.0623 0.0231
#> 24 betaMr 5.5471 0.6945
#> 25 betaM2 -0.0468 0.0118
#> 26 betaY1 0.0149 0.0139
#> 27 betaYr 1.2907 0.5133
#> 28 betaY2 -0.0212 0.0135
#> 29 betaM1Y1 0.3807 0.0317
#> 30 betaM1Yr 0.1206 0.9362
#> 31 betaM1Y2 0.0548 0.0505
#> 32 betaMrYr 0.7277 0.0309
#> 33 betaMrY2 -0.0012 0.0020
#> 34 betaM2Y2 0.4813 0.1434
#> 35 muetaM1 2.1134 0.0247
#> 36 muetaMr 111.8319 0.8223
#> 37 muetaM2 0.6878 0.0136
#> 38 muetaY1 1.7667 0.0166
#> 39 muetaYr 100.7289 0.8923
#> 40 muetaY2 0.6942 0.0172
#> 41 Mediator11 0.0237 0.0090
#> 42 Mediator1r 0.0075 0.0585
#> 43 Mediator12 0.0034 0.0034
#> 44 Mediatorrr 4.0368 0.5298
#> 45 Mediatorr2 -0.0066 0.0111
#> 46 Mediator22 -0.0225 0.0088
#> 47 total1 0.0386 0.0156
#> 48 totalr 5.3350 0.6953
#> 49 total2 -0.0469 0.0133
#> 50 residualsM 33.8855 1.0615
#> 51 residualsY 40.5671 0.8725
#> 52 residualsYM 6.9264 0.6861
paraMed3_BLS <- c(
"muetaX1", "muetaXr", "muetaX2", "mugX",
paste0("psi", c("X1X1", "X1Xr", "X1X2", "XrXr", "XrX2", "X2X2")),
"alphaM1", "alphaMr", "alphaM2", "mugM",
paste0("psi", c("M1M1", "M1Mr", "M1M2", "MrMr", "MrM2", "M2M2"), "_r"),
"alphaY1", "alphaYr", "alphaY2", "mugY",
paste0("psi", c("Y1Y1", "Y1Yr", "Y1Y2", "YrYr", "YrY2", "Y2Y2"), "_r"),
paste0("beta", c("X1Y1", "X1Yr", "X1Y2", "XrYr", "XrY2", "X2Y2",
"X1M1", "X1Mr", "X1M2", "XrMr", "XrM2", "X2M2",
"M1Y1", "M1Yr", "M1Y2", "MrYr", "MrY2", "M2Y2")),
"muetaM1", "muetaMr", "muetaM2", "muetaY1", "muetaYr", "muetaY2",
paste0("mediator", c("111", "11r", "112", "1rr", "1r2", "122", "rr2", "r22", "rrr", "222")),
paste0("total", c("11", "1r", "12", "rr", "r2", "22")),
"residualsX", "residualsM", "residualsY", "residualsMX", "residualsYX", "residualsYM"
)
set.seed(20191029)
Med3_LGCM_BLS <- getMediation(
dat = RMS_dat0, t_var = rep("T", 3), y_var = "S", m_var = "M", x_type = "longitudinal",
x_var = "R", curveFun = "bilinear spline", records = list(2:9, 1:9, 1:9),
res_scale = c(0.1, 0.1, 0.1), res_cor = c(0.3, 0.3), tries = 10, paramOut = TRUE,
names = paraMed3_BLS
)
Med3_LGCM_BLS@Estimates
#> Name Estimate SE
#> 1 muetaX1 2.1134 0.0245
#> 2 muetaXr 111.8439 0.8270
#> 3 muetaX2 0.6874 0.0135
#> 4 mugX 26.3157 0.2478
#> 5 psiX1X1 0.1898 0.0174
#> 6 psiX1Xr 5.0488 0.4757
#> 7 psiX1X2 -0.0275 0.0066
#> 8 psiXrXr 259.0603 17.8840
#> 9 psiXrX2 -2.1602 0.2313
#> 10 psiX2X2 0.0341 0.0044
#> 11 alphaM1 0.9251 0.0670
#> 12 alphaMr 15.9474 3.0276
#> 13 alphaM2 0.4582 0.2806
#> 14 mugM 34.6342 0.3577
#> 15 psiM1M1_r 0.0544 0.0063
#> 16 psiM1Mr_r 1.7670 0.1998
#> 17 psiM1M2_r -0.0073 0.0042
#> 18 psiMrMr_r 104.5097 8.3212
#> 19 psiMrM2_r -0.7660 0.1576
#> 20 psiM2M2_r 0.0233 0.0051
#> 21 alphaY1 0.0432 0.0678
#> 22 alphaYr 0.6016 1.3882
#> 23 alphaY2 -1.1500 0.2806
#> 24 mugY 33.6805 1.0216
#> 25 psiY1Y1_r 0.0195 0.0041
#> 26 psiY1Yr_r 0.5092 0.0964
#> 27 psiY1Y2_r -0.0010 0.0028
#> 28 psiYrYr_r 36.6572 3.3169
#> 29 psiYrY2_r -0.3656 0.0836
#> 30 psiY2Y2_r 0.0079 0.0041
#> 31 betaX1Y1 0.3987 0.0313
#> 32 betaX1Yr 0.6677 1.2151
#> 33 betaX1Y2 0.0653 0.0571
#> 34 betaXrYr 0.7445 0.0347
#> 35 betaXrY2 -0.0020 0.0023
#> 36 betaX2Y2 0.4755 0.1700
#> 37 betaX1M1 0.1540 0.0371
#> 38 betaX1Mr 4.4495 1.2668
#> 39 betaX1M2 -0.1999 0.0700
#> 40 betaXrMr 0.1960 0.0348
#> 41 betaXrM2 0.0090 0.0028
#> 42 betaX2M2 0.8529 0.1818
#> 43 betaM1Y1 0.2718 0.0541
#> 44 betaM1Yr -2.6244 1.5247
#> 45 betaM1Y2 0.0092 0.0928
#> 46 betaMrYr 0.2927 0.0367
#> 47 betaMrY2 0.0028 0.0024
#> 48 betaM2Y2 0.3738 0.1587
#> 49 muetaM1 1.7676 0.0166
#> 50 muetaMr 100.6304 0.8937
#> 51 muetaM2 0.6963 0.0171
#> 52 muetaY1 0.8493 0.0131
#> 53 muetaYr 56.7453 0.9210
#> 54 muetaY2 0.5806 0.0131
#> 55 mediator111 0.1084 0.0229
#> 56 mediator11r -1.0462 0.6148
#> 57 mediator112 0.0037 0.0370
#> 58 mediator1rr 0.1954 0.3497
#> 59 mediator1r2 0.0019 0.0039
#> 60 mediator122 0.0244 0.0269
#> 61 mediatorrr2 0.2179 0.0308
#> 62 mediatorr22 0.0021 0.0018
#> 63 mediatorrrr -0.0008 0.0010
#> 64 mediator222 0.1777 0.0713
#> 65 total11 0.2624 0.0273
#> 66 total1r 3.5987 1.2804
#> 67 total12 -0.1700 0.0633
#> 68 totalrr 0.4140 0.0339
#> 69 totalr2 0.0103 0.0024
#> 70 total22 1.0306 0.1773
#> 71 residualsX 41.1750 1.0840
#> 72 residualsM 19.4421 0.8803
#> 73 residualsY 33.9661 0.5548
#> 74 residualsMX 7.0083 0.7114
#> 75 residualsYX 1.8316 0.5713
#> 76 residualsYM 2.5687 0.5551
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.