The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
# Load ECLS-K (2011) data
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the
# starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
# Standardize time-invariant covariates (TICs)
## ex1 and ex2 are standardized growth TICs in models
RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning)
RMS_dat0$ex2 <- scale(RMS_dat0$Attention_focus)
## gx1 and gx2 are standardized cluster TICs in models
RMS_dat0$gx1 <- scale(RMS_dat0$INCOME)
RMS_dat0$gx2 <- scale(RMS_dat0$EDU)
xstarts <- mean(baseT)
getSummary()
function, with HetModels = TRUE
specified.Math_BLS_LGCM1 <- getLGCM(
dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = FALSE,
records = 1:9, res_scale = 0.1
)
Math_BLS_LGCM2 <- getMIX(
dat = RMS_dat0, prop_starts = c(0.45, 0.55), sub_Model = "LGCM", y_var = "M",
t_var = "T", records = 1:9, curveFun = "BLS", intrinsic = FALSE,
res_scale = list(0.3, 0.3)
)
set.seed(20191029)
Math_BLS_LGCM3 <- getMIX(
dat = RMS_dat0, prop_starts = c(0.33, 0.34, 0.33), sub_Model = "LGCM", y_var = "M",
t_var = "T", records = 1:9, curveFun = "BLS", intrinsic = FALSE,
res_scale = list(0.3, 0.3, 0.3), tries = 10
)
Figure1 <- getFigure(
model = Math_BLS_LGCM1@mxOutput, nClass = NULL, cluster_TIC = NULL, sub_Model = "LGCM",
y_var = "M", curveFun = "BLS", y_model = "LGCM", t_var = "T", records = 1:9,
m_var = NULL, x_var = NULL, x_type = NULL, xstarts = xstarts, xlab = "Month",
outcome = "Mathematics"
)
#> Treating first argument as an object that stores a character
show(Figure1)
#> figOutput Object
#> --------------------
#> Trajectories: 1
#> Figure 1:
#> `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
Figure2 <- getFigure(
model = Math_BLS_LGCM2@mxOutput, nClass = 2, cluster_TIC = NULL, sub_Model = "LGCM",
y_var = "M", curveFun = "BLS", y_model = "LGCM", t_var = "T", records = 1:9,
m_var = NULL, x_var = NULL, x_type = NULL, xstarts = xstarts, xlab = "Month",
outcome = "Mathematics"
)
#> Treating first argument as an object that stores a character
#> Treating first argument as an object that stores a character
show(Figure2)
#> figOutput Object
#> --------------------
#> Trajectories: 1
#> Figure 1:
#> `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
Figure3 <- getFigure(
model = Math_BLS_LGCM3@mxOutput, nClass = 3, cluster_TIC = NULL, sub_Model = "LGCM",
y_var = "M", curveFun = "BLS", y_model = "LGCM", t_var = "T", records = 1:9,
m_var = NULL, x_var = NULL, x_type = NULL, xstarts = xstarts, xlab = "Month",
outcome = "Mathematics"
)
#> Treating first argument as an object that stores a character
#> Treating first argument as an object that stores a character
#> Treating first argument as an object that stores a character
show(Figure3)
#> figOutput Object
#> --------------------
#> Trajectories: 1
#> Figure 1:
#> `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
getSummary(model_list = list(Math_BLS_LGCM1@mxOutput, Math_BLS_LGCM2@mxOutput, Math_BLS_LGCM3@mxOutput),
HetModels = TRUE)
#> # A tibble: 3 × 11
#> Model No_Params `-2ll` AIC BIC Y_res_c1 Y_res_c2 Y_res_c3 `%Class1`
#> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 Model1 11 31347. 31369. 31416. 34.0 NA NA 100%
#> 2 Model2 23 31135. 31181. 31278. 34.2 31.6 NA 67.4%
#> 3 Model3 35 31008. 31078. 31226. 29.6 31.0 31.5 22.4%
#> # ℹ 2 more variables: `%Class2` <chr>, `%Class3` <chr>
paraBLS_PLGCM.r <- c(
"Y_mueta0", "Y_mueta1", "Y_mueta2", "Y_knot",
paste0("Y_psi", c("00", "01", "02", "11", "12", "22")), "Y_res",
"Z_mueta0", "Z_mueta1", "Z_mueta2", "Z_knot",
paste0("Z_psi", c("00", "01", "02", "11", "12", "22")), "Z_res",
paste0("YZ_psi", c("00", "10", "20", "01", "11", "21", "02", "12", "22")),
"YZ_res"
)
set.seed(20191029)
RM_BLS_PLGCM3 <- getMIX(
dat = RMS_dat0, prop_starts = c(0.33, 0.34, 0.33), sub_Model = "MGM",
cluster_TIC = c("gx1", "gx2"), t_var = c("T", "T"), y_var = c("R", "M"),
curveFun = "BLS", intrinsic = FALSE, records = list(1:9, 1:9),
res_scale = list(c(0.3, 0.3), c(0.3, 0.3), c(0.3, 0.3)),
res_cor = list(0.3, 0.3, 0.3), y_model = "LGCM", tries = 10, paramOut = TRUE,
names = paraBLS_PLGCM.r
)
Figure4 <- getFigure(
model = RM_BLS_PLGCM3@mxOutput, nClass = 3, cluster_TIC = c("gx1", "gx2"),
sub_Model = "MGM", y_var = c("R", "M"), curveFun = "BLS", y_model = "LGCM",
t_var = c("T", "T"), records = list(1:9, 1:9), m_var = NULL, x_var = NULL,
x_type = NULL, xstarts = xstarts, xlab = "Month",
outcome = c("Reading", "Mathematics")
)
#> Treating first argument as an object that stores a character
#> Treating first argument as an object that stores a character
#> Treating first argument as an object that stores a character
#> Treating first argument as an object that stores a character
#> Treating first argument as an object that stores a character
#> Treating first argument as an object that stores a character
show(Figure4)
#> figOutput Object
#> --------------------
#> Trajectories: 2
#>
#> Trajectory 1 :
#> Figure 1:
#> `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
#>
#> Trajectory 2 :
#> Figure 1:
#> `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.