The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
# Load ECLS-K (2011) data
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the
# starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- (RMS_dat0$T1 - baseT)/12
RMS_dat0$T2 <- (RMS_dat0$T2 - baseT)/12
RMS_dat0$T3 <- (RMS_dat0$T3 - baseT)/12
RMS_dat0$T4 <- (RMS_dat0$T4 - baseT)/12
RMS_dat0$T5 <- (RMS_dat0$T5 - baseT)/12
RMS_dat0$T6 <- (RMS_dat0$T6 - baseT)/12
RMS_dat0$T7 <- (RMS_dat0$T7 - baseT)/12
RMS_dat0$T8 <- (RMS_dat0$T8 - baseT)/12
RMS_dat0$T9 <- (RMS_dat0$T9 - baseT)/12
# Standardize time-invariant covariates (TICs)
## ex1 and ex2 are standardized growth TICs in models
RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning)
RMS_dat0$ex2 <- scale(RMS_dat0$Attention_focus)
xstarts <- mean(baseT)/12
getSummary()
function is used to
generate a comprehensive summary table for these two models.
Additionally, the visual representations of the growth rate and change
from the baseline for both models.paraNonP_LCSM <- c(
c("mueta0", "mueta1", paste0("psi", c("00", "01", "11")), paste0("rel_rate", 2:8),
"residuals", paste0("slp_val_est", 1:8), paste0("slp_var_est", 1:8),
paste0("chg_inv_val_est", 1:8), paste0("chg_inv_var_est", 1:8),
paste0("chg_bl_val_est", 1:8), paste0("chg_bl_var_est", 1:8))
)
Read_LCSM_NonP <- getLCSM(
dat = RMS_dat0, t_var = "T", y_var = "R", curveFun = "nonparametric",
intrinsic = FALSE, records = 1:9, growth_TIC = NULL, res_scale = 0.1,
paramOut = TRUE, names = paraNonP_LCSM
)
paraNonP_LCSM_TIC <- c(
c("alpha0", "alpha1", paste0("psi", c("00", "01", "11")), paste0("rel_rate", 2:8),
"residuals", paste0("beta1", c(0:1)), paste0("beta2", c(0:1)),
paste0("mux", 1:2), paste0("phi", c("11", "12", "22")), "mueta0", "mueta1",
paste0("slp_val_est", 1:8), paste0("slp_var_est", 1:8),
paste0("chg_inv_val_est", 1:8), paste0("chg_inv_var_est", 1:8),
paste0("chg_bl_val_est", 1:8), paste0("chg_bl_var_est", 1:8))
)
Read_LCSM_NonP_TIC <- getLCSM(
dat = RMS_dat0, t_var = "T", y_var = "R", curveFun = "nonparametric",
intrinsic = FALSE, records = 1:9, growth_TIC = c("ex1", "ex2"), res_scale = 0.1,
paramOut = TRUE, names = paraNonP_LCSM_TIC
)
getSummary(model_list = list(Read_LCSM_NonP@mxOutput, Read_LCSM_NonP_TIC@mxOutput))
#> Model No_Params -2ll AIC BIC Y_residuals
#> 1 Model1 13 32288.39 32314.39 32369.18 45.1379
#> 2 Model2 22 34575.48 34619.48 34712.20 45.1410
Figure1 <- getFigure(
model = Read_LCSM_NonP@mxOutput, sub_Model = "LCSM", y_var = "R", curveFun = "NonP",
y_model = "LCSM", t_var = "T", records = 1:9, xstarts = xstarts, xlab = "Year",
outcome = "Reading"
)
#> Treating first argument as an object that stores a character
#> Treating first argument as an object that stores a character
#> Treating first argument as an object that stores a character
show(Figure1)
#> figOutput Object
#> --------------------
#> Trajectories: 1
#> Figure 1:
#> `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
#> Figure 2:
Figure2 <- getFigure(
model = Read_LCSM_NonP_TIC@mxOutput, sub_Model = "LCSM", y_var = "R", curveFun = "NonP",
y_model = "LCSM", t_var = "T", records = 1:9, xstarts = xstarts, xlab = "Year",
outcome = "Reading"
)
#> Treating first argument as an object that stores a character
#> Treating first argument as an object that stores a character
#> Treating first argument as an object that stores a character
show(Figure2)
#> figOutput Object
#> --------------------
#> Trajectories: 1
#> Figure 1:
#> `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
#> Figure 2:
Read_LCSM_QUAD <- getLCSM(
dat = RMS_dat0, t_var = "T", y_var = "R", curveFun = "quadratic", intrinsic = FALSE,
records = 1:9, res_scale = 0.1
)
set.seed(20191029)
Read_LCSM_EXP_r <- getLCSM(
dat = RMS_dat0, t_var = "T", y_var = "R", curveFun = "negative exponential",
intrinsic = FALSE, records = 1:9, res_scale = 0.1, tries = 10
)
set.seed(20191029)
Read_LCSM_JB_r <- getLCSM(
dat = RMS_dat0, t_var = "T", y_var = "R", curveFun = "Jenss-Bayley",
intrinsic = FALSE, records = 1:9, res_scale = 0.1, tries = 10
)
Figure3 <- getFigure(
model = Read_LCSM_QUAD@mxOutput, sub_Model = "LCSM", y_var = "R", curveFun = "QUAD",
y_model = "LCSM", t_var = "T", records = 1:9, xstarts = xstarts, xlab = "Year",
outcome = "Reading"
)
#> Treating first argument as an object that stores a character
show(Figure3)
#> figOutput Object
#> --------------------
#> Trajectories: 1
#> Figure 1:
#> `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
#> Figure 2:
Figure4 <- getFigure(
model = Read_LCSM_EXP_r@mxOutput, sub_Model = "LCSM", y_var = "R", curveFun = "EXP",
y_model = "LCSM", t_var = "T", records = 1:9, xstarts = xstarts, xlab = "Year",
outcome = "Reading"
)
#> Treating first argument as an object that stores a character
show(Figure4)
#> figOutput Object
#> --------------------
#> Trajectories: 1
#> Figure 1:
#> `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
#> Figure 2:
Figure5 <- getFigure(
model = Read_LCSM_JB_r@mxOutput, sub_Model = "LCSM", y_var = "R", curveFun = "JB",
y_model = "LCSM", t_var = "T", records = 1:9, xstarts = xstarts, xlab = "Year",
outcome = "Reading"
)
#> Treating first argument as an object that stores a character
show(Figure5)
#> figOutput Object
#> --------------------
#> Trajectories: 1
#> Figure 1:
#> `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'
#> Figure 2:
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.