The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(nlmixr2lib)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(ggplot2)
#> Warning: package 'ggplot2' was built under R version 4.5.1Replicate figures 2 and 3 in the publication with a single 10 mg/kg dose to a cynomolgus monkey.
dSimDose <-
data.frame(
ID = 1,
AMT = 10, # mg/kg
WT = 5, # cynomologus monkey body weight according to the paper
TIME = 0,
EVID = 1,
CMT = "central"
)
dSimObs <-
data.frame(
ID = 1,
AMT = 0,
WT = 5,
TIME = c(5/60, 1, 2, 4, 8, 12, seq(24, 336, by = 24)),
EVID = 0,
CMT = "central"
)
dSimPrep <- dplyr::bind_rows(dSimDose, dSimObs)
Grimm2023Tront <- readModelDb("Grimm_2023_trontinemab")
# Set BSV to zero for simulation to get a reproducible result
dSimTront <- rxode2::rxSolve(Grimm2023Tront |> rxode2::zeroRe(), events = dSimPrep)
#> using C compiler: 'gcc.exe (GCC) 14.2.0'
#> ℹ omega/sigma items treated as zero: 'bsv_fpla_cerebellum', 'bsv_fpla_hippocampus', 'bsv_fpla_striatum', 'bsv_fpla_cortex', 'bsv_fpla_choroid_plexus'
dSimTront$Analyte <- "Trontinemab"Replicate figures 2 and 3 in the publication with a single 20 mg/kg dose to a cynomolgus monkey.
dSimDose <-
data.frame(
ID = 1,
AMT = 20, # mg/kg
WT = 5, # cynomologus monkey body weight according to the paper
TIME = 0,
EVID = 1,
CMT = "central"
)
dSimObs <-
data.frame(
ID = 1,
AMT = 0,
WT = 5,
TIME = c(5/60, 1, 2, 4, 8, 12, seq(24, 336, by = 24)),
EVID = 0,
CMT = "central"
)
dSimPrep <- dplyr::bind_rows(dSimDose, dSimObs)
Grimm2023Gant <- readModelDb("Grimm_2023_gantenerumab")
# Set BSV to zero for simulation to get a reproducible result
dSimGant <- rxode2::rxSolve(Grimm2023Gant |> rxode2::zeroRe(), events = dSimPrep)
#> using C compiler: 'gcc.exe (GCC) 14.2.0'
#> ℹ omega/sigma items treated as zero: 'bsv_fpla_cerebellum', 'bsv_fpla_hippocampus', 'bsv_fpla_striatum', 'bsv_fpla_cortex', 'bsv_fpla_choroid_plexus'
dSimGant$Analyte <- "Gantenerumab"Replicate figure 2 from the paper.
dSim <- bind_rows(dSimTront, dSimGant)
dSim$Analyte <- factor(dSim$Analyte, levels = c("Trontinemab", "Gantenerumab"))
ggplot(dSim, aes(x = time, y = sim)) +
geom_line() +
labs(
x = "Time (h)",
y = "Concentration (ng/mL)"
) +
scale_y_log10() +
scale_x_continuous(breaks = seq(0, 336, by = 48)) +
coord_cartesian(ylim = c(1e3, NA)) +
facet_grid(~Analyte)Replicate figure 3 from the paper.
d_plot_brain <-
dSim |>
select(time, Analyte, starts_with("C", ignore.case = FALSE)) |>
select(-starts_with("Cbrain"), -Cc) |>
tidyr::pivot_longer(cols = -c("time", "Analyte"), names_to = "ASPEC", values_to = "AVAL") |>
mutate(
ASPEC =
factor(
gsub(x = ASPEC, pattern = "^C", replacement = ""),
levels = c("hippocampus", "cerebellum", "choroid_plexus", "cortex", "striatum", "csf"),
labels = c("Hippocampus", "Cerebellum", "Choroid Plexus", "Cortex", "Striatum", "Cerebrospinal Fluid")
)
)
ggplot(d_plot_brain, aes(x = time, y = AVAL, colour = Analyte)) +
geom_line() +
labs(
x = "Time (h)",
y = "Concentration (ng/g)"
) +
scale_x_continuous(breaks = c(0, 72, 168, 240, 336)) +
facet_wrap(~ASPEC)These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.