The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The aim is to develop an R package, which is new.dist package, for the probability (density) function, the distribution function, the quantile function and the associated random number generation function for discrete and continuous distributions, which have recently been proposed in the literature. This package implements the following distributions: The Power Muth Distribution, A bimodal Weibull Distribution, The Discrete Lindley Distribution 1, The Discrete Lindley Distribution 2, The Gamma-Lomax Distribution, Weighted Geometric Distribution, A Power Log-Dagum Distribution, Kumaraswamy Distribution, Lindley Distribution, Ram Awadh Distribution, The Unit-Inverse Gaussian Distribution, EP Distribution, Akash Distribution, Ishita Distribution, Maxwell Distribution, The Standard Omega Distribution, Slashed Generalized Rayleigh Distribution, Two-Parameter Rayleigh Distribution, Muth Distribution, Uniform-Geometric Distribution, Discrete Weibull Distribution.
You can install the development version of new.dist from [GitHub][https://github.com/] with:
new.dist
Density, distribution function, quantile function and random generation for parameter estimation of distributions.
dbwd
Density function for Bimodal Weibull distribution with shape (alpha) and scale (beta) parameters.
pbwd
Distribution function for Bimodal Weibull distribution with shape (alpha) and scale (beta) parameters.
qbwd
Quantile function for Bimodal Weibull distribution with shape (alpha) and scale (beta) parameters.
rbwd
Random generation for a Bimodal Weibull distribution with shape (alpha) and scale (beta) parameters.
library(new.dist)
rbwd(5,alpha=2,beta=3,sigma=4)
#> [1] 5.787403 3.062926 2.560047 3.406179 2.344262
dsgrd
Density function for a Slashed Generalized Rayleigh distribution with shape (alpha), scale (theta) and kurtosis(beta) parameters.
psgrd
Distribution function for a Slashed Generalized Rayleigh distribution with shape (alpha), scale (theta) and kurtosis (beta) parameters.
qsgrd
Quantile function for a Slashed Generalized Rayleigh distribution with shape (alpha), scale (theta) and kurtosis (beta) parameters.
rsgrd
Random generation for a Slashed Generalized Rayleigh distribution with shape (alpha), scale (theta) and kurtosis (beta) parameters.
library(new.dist)
rsgrd(5,theta=3,alpha=1,beta=4)
#> [1] 0.9162424 2.2939520 0.9160551 0.7168782 1.2676308
dsod
Density function for a the Standard Omega distribution with alpha and beta parameters.
psod
Distribution function for a the Standard Omega distribution with alpha and beta parameters.
qsod
Quantile function for a the Standard Omega distribution with alpha and beta parameters.
rsod
Random generation for a the Standard Omega distribution with alpha and beta parameters.
dugd
Density function for the Uniform-Geometric distribution with theta parameter.
pugd
Distribution function for the Uniform-Geometric distribution with theta parameter.
qugd
Quantile function for the Uniform-Geometric distribution with theta parameter.
rugd
Random generation for the Uniform-Geometric distribution with theta parameter.
dtpmd
Density function for the Power Muth distribution with shape (beta) and scale (alpha) parameters.
ptpmd
Distribution function for the Power Muth distribution shape (beta) and scale (alpha) parameters.
qtpmd
Quantile function for the Power Muth distribution with shape (beta) and scale (alpha) parameters.
rtpmd
Random generation for the Power Muth distribution with shape (beta) and scale (alpha) parameters.
dtprd
Density function for the Two-Parameter Rayleigh distribution with location (mu) and scale (lambda) parameters.
ptprd
Distribution function for Two-Parameter Rayleigh distribution with location (mu) and scale (lambda) parameters.
qtprd
Quantile function for Two-Parameter Rayleigh distribution with location (mu) and scale (lambda) parameters.
rtprd
Random generation for Two-Parameter Rayleigh distribution with location (mu) and scale (lambda) parameters.
duigd
Density function for the Unit Inverse Gaussian distribution with mean (mu) and scale (lambda) parameters.
puigd
Distribution function for the Unit Inverse Gaussian distribution with mean (mu) and scale (lambda) parameters.
quigd
Quantile function for the Unit Inverse Gaussian distribution with mean (mu) and scale (lambda) parameters.
ruigd
Random generation for the Unit Inverse Gaussian distribution with mean (mu) and scale (lambda) parameters.
dwgd
Density function for the Weighted Geometric distribution with alpha and lambda parameters.
pwgd
Distribution function for the Weighted Geometric distribution with alpha and lambda parameters.
qwgd
Quantile function for the Weighted Geometric distribution with alpha and lambda parameters.
rwgd
Random generation for the Weighted Geometric distribution with alpha and lambda parameters.
ddLd1
Density function for the Discrete Lindley distribution 1 with theta parameter.
pdLd1
Distribution function for the Discrete Lindley distribution 1 with theta parameter.
qdLd1
Quantile function for the Discrete Lindley distribution 1 with theta parameter.
rdLd1
Random generation for the Discrete Lindley distribution 1 with theta parameter.
dmd
Density function for Maxwell distribution with scale (theta) parameter.
pmd
Distribution function for a Maxwell distribution with scale (theta) parameter.
qmd
Quantile function for a Maxwell distribution with scale (theta) parameter.
rmd
Random generation for a Maxwell distribution with scale (theta) parameter.
dkd
Density function for Kumaraswamy distribution with shape (alpha, lambda) parameters.
pkd
Distribution function for Kumaraswamy distribution with shape (alpha, lambda) parameters.
qkd
Quantile function for Kumaraswamy distribution with shape (alpha, lambda) parameters.
rkd
Random generation for Kumaraswamy distribution with shape (alpha, lambda) parameters.
dgld
Density function for the Gamma-Lomax distribution with shape (a, alpha) and scale (beta) parameters.
pgld
Distribution function for the Gamma-Lomax distribution with shape (a, alpha) and scale (beta) parameters.
qgld
Quantile function for the Gamma-Lomax distribution with shape (a, alpha) and scale (beta) parameters.
rgld
Random generation for the Gamma-Lomax distribution with shape (a, alpha) and scale (beta) parameters.
library(new.dist)
rgld(5,a=2,alpha=3,beta=4)
#> [1] 2.8217781 5.5886484 8.4958716 0.9864014 2.1699043
ddLd2
Density function for a Discrete Lindley distribution 2 with theta parameter.
pdLd2
Distribution function for a Discrete Lindley distribution 2 with theta parameter.
qdLd2
Quantile function for a Discrete Lindley distribution 2 with theta parameter.
rdLd2
Random generation for a Discrete Lindley distribution 2 with theta parameter.
dEPd
Density function for the EP distribution with lambda and beta parameters.
pEPd
Distribution function for the EP distribution with lambda and beta parameters.
qEPd
Quantile function for the EP distribution with lambda and beta parameters.
rEPd
Random generation for the EP distribution with lambda and beta parameters.
library(new.dist)
rEPd(5,lambda=2,beta=3)
#> [1] 0.08754699 0.01152708 0.27621565 0.12618652 0.18547342
dRA
Density function for a Ram Awadh distribution with scale (theta) parameter.
pRA
Distribution function for a Ram Awadh distribution with scale (theta) parameter.
qRA
Quantile function for a Ram Awadh distribution with scale (theta) parameter.
rRA
Random generation for a Ram Awadh distribution with scale (theta) parameter.
domd
Density function for the Muth distribution with alpha parameter.
pomd
Distribution function for the Muth distribution with alpha parameter.
qomd
Quantile function for the Muth distribution with alpha parameter.
romd
Random generation for the Muth distribution with alpha parameter.
dpldd
Density function for a Power Log Dagum distribution with alpha, beta and theta parameters.
ppldd
Distribution function for a Power Log Dagum distribution with alpha, beta and theta parameters.
qpldd
Quantile function for a Power Log Dagum distribution with alpha, beta and theta parameters.
rpldd
Random generation for a Power Log Dagum distribution with alpha, beta and theta parameters.
library(new.dist)
rpldd(5, alpha=2, beta=3, theta=4)
#> [1] 0.05775973 -0.28725832 0.53623427 0.64797737 0.01620600
dLd
Density function for Lindley distribution with theta parameter.
pLd
Distribution function for Lindley distribution with theta parameter.
qLd
Quantile function for Lindley distribution with theta parameter.
rLd
Random generation for Lindley distribution with theta parameter.
Department of Statistics, Faculty of Science, Selcuk University, 42250, Konya, Turkey
Email:coskun@selcuk.edu.tr
Akdoğan, Y., Kuş, C., Asgharzadeh, A., Kınacı, İ., & Sharafi, F. (2016). Uniform-geometric distribution. Journal of Statistical Computation and Simulation, 86(9), 1754-1770.
Akgül, F. G., Acıtaş, Ş. ve Şenoğlu, B., 2018, Inferences on stress–strength reliability based on ranked set sampling data in case of Lindley distribution, Journal of statistical computation and simulation, 88 (15), 3018-3032.
Bakouch, H. S., Khan, M. N., Hussain, T. ve Chesneau, C., 2019, A power log-Dagum distribution: estimation and applications, Journal of Applied Statistics, 46 (5), 874-892.
Bakouch, H. S., Jazi, M. A. ve Nadarajah, S., 2014, A new discrete distribution, Statistics, 48 (1), 200-240.
Birbiçer, İ. ve Genç, A. İ., 2022, On parameter estimation of the standard omega distribution. Journal of Applied Statistics, 1-17.
Cordeiro, G. M., Ortega, E. M. ve Popović, B. V., 2015, The gamma-Lomax distribution, Journal of statistical computation and simulation, 85 (2), 305-319.
Dey, S., Dey, T. ve Kundu, D., 2014, Two-parameter Rayleigh distribution: different methods of estimation, American Journal of Mathematical and Management Sciences, 33 (1), 55-74.
Ghitany, M., Mazucheli, J., Menezes, A. ve Alqallaf, F., 2019, The unit-inverse Gaussian distribution: A new alternative to two-parameter distributions on the unit interval, Communications in Statistics-Theory and Methods, 48 (14), 3423-3438.
Gómez-Déniz, E. ve Calderín-Ojeda, E., 2011, The discrete Lindley distribution: properties and applications.Journal of statistical computation and simulation, 81 (11), 1405-1416.
Iriarte, Y. A., Vilca, F., Varela, H. ve Gómez, H. W., 2017, Slashed generalized Rayleigh distribution, Communications in Statistics-Theory and Methods, 46 (10), 4686-4699.
Jodra, P., Gomez, H. W., Jimenez-Gamero, M. D., & Alba-Fernandez, M. V. (2017). The power Muth distribution . Mathematical Modelling and Analysis, 22(2), 186-201.
Jodrá, P., Jiménez-Gamero, M. D. ve Alba-Fernández, M. V., 2015, On the Muth distribution, Mathematical Modelling and Analysis, 20 (3), 291-310.
Kohansal, A. ve Bakouch, H. S., 2021, Estimation procedures for Kumaraswamy distribution parameters under adaptive type-II hybrid progressive censoring, Communications in Statistics-Simulation and Computation, 50 (12), 4059-4078.
Krishna, H., Vivekanand ve Kumar, K., 2015, Estimation in Maxwell distribution with randomly censored data, Journal of statistical computation and simulation, 85 (17), 3560-3578.
Kuş, C., 2007, A new lifetime distribution, Computational Statistics & Data Analysis, 51 (9), 4497-4509.
Najarzadegan, H., Alamatsaz, M. H., Kazemi, I. ve Kundu, D., 2020, Weighted bivariate geometric distribution: Simulation and estimation, Communications in Statistics-Simulation and Computation, 49 (9), 2419-2443.
Ristić, M. M., & Balakrishnan, N. (2012), The gamma-exponentiated exponential distribution. Journal of statistical computation and simulation, 82(8), 1191-1206.
Shukla, K. K., Shanker, R. ve Tiwari, M. K., 2022, A new one parameter discrete distribution and its applications, Journal of Statistics and Management Systems, 25 (1), 269-283.
Vila, R. ve Niyazi Çankaya, M., 2022, A bimodal Weibull distribution: properties and inference,Journal of Applied Statistics, 49 (12), 3044-3062.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.