The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The way to read an volumetric image file is to use
read_vol
:
Information about the geometry of the image volume is shown here:
print(vol)
#>
#> === NeuroVol Object ===
#>
#> * Basic Information
#> Type: DenseNeuroVol
#> Dimensions: 64 x 64 x 25 (406.6 Kb)
#> Total Voxels: 102,400
#>
#> * Data Properties
#> Value Range: [0.00, 1.00]
#>
#> * Spatial Properties
#> Spacing: 3.50 x 3.50 x 3.70 mm
#> Origin: 112.0, -108.5, -46.2 mm
#> Axes: Right-to-Left x Posterior-to-Anterior x Inferior-to-Superior
#>
#> ======================================
#>
#> Access Methods:
#> . Get Slice: slice(object, zlevel=10)
#> . Get Value: object[i, j, k]
#> . Plot: plot(object) # shows multiple slices
read_vol
returns an object of class
NeuroVol
object which extends an R array
and
has 3 dimensions (x,y,z).
class(vol)
#> [1] "DenseNeuroVol"
#> attr(,"package")
#> [1] "neuroim2"
is.array(vol)
#> [1] TRUE
dim(vol)
#> [1] 64 64 25
vol[1,1,1]
#> [1] 0
vol[64,64,24]
#> [1] 0
Arithmetic can be performed on images as if they were ordinary
array
s:
vol2 <- vol + vol
sum(vol2) == 2 * sum(vol)
#> [1] TRUE
vol3 <- vol2 - 2*vol
all(vol3 == 0)
#> [1] TRUE
A numeric image volume can be converted to a binary image as follows:
vol2 <- as.logical(vol)
class(vol2)
#> [1] "LogicalNeuroVol"
#> attr(,"package")
#> [1] "neuroim2"
print(vol2[1,1,1])
#> [1] FALSE
We can also create a NeuroVol
instance from an
array
or numeric
vector. First we consruct a
standard R array
:
Now we reate a NeuroSpace
instance that describes the
geometry of the image including, at minimum, its dimensions and voxel
spacing.
bspace <- NeuroSpace(dim=c(64,64,64), spacing=c(1,1,1))
vol <- NeuroVol(x, bspace)
vol
#>
#> === NeuroVol Object ===
#>
#> * Basic Information
#> Type: DenseNeuroVol
#> Dimensions: 64 x 64 x 64 (2 Mb)
#> Total Voxels: 262,144
#>
#> * Data Properties
#> Value Range: [0.00, 0.00]
#>
#> * Spatial Properties
#> Spacing: 1.00 x 1.00 x 1.00 mm
#> Origin: 0.0, 0.0, 0.0 mm
#> Axes: Left-to-Right x Posterior-to-Anterior x Inferior-to-Superior
#>
#> ======================================
#>
#> Access Methods:
#> . Get Slice: slice(object, zlevel=10)
#> . Get Value: object[i, j, k]
#> . Plot: plot(object) # shows multiple slices
We do not usually have to create NeuroSpace
objects,
because geometric information about an image is automatically determined
from information stored in the image file header. Thus,
NeuroSpace
objects are usually copied from existing images
using the space
extractor function when needed:
vol2 <- NeuroVol((vol+1)*25, space(vol))
max(vol2)
#> [1] 25
space(vol2)
#>
#> NeuroSpace Object
#>
#> >> Dimensions
#> Grid Size: 64 x 64 x 64
#> Memory: 5.9 KB
#>
#> >> Spatial Properties
#> Spacing: 1.00 x 1.00 x 1.00 mm
#> Origin: 0.00 x 0.00 x 0.00 mm
#>
#> >> Anatomical Orientation
#> X: Left-to-Right | Y: Posterior-to-Anterior | Z: Inferior-to-Superior
#>
#> >> World Transformation
#> Forward (Voxel to World):
#> 1.000 0.000 0.000 0.000
#> 0.000 1.000 0.000 0.000
#> 0.000 0.000 1.000 0.000
#> 0.000 0.000 0.000 1.000
#> Inverse (World to Voxel):
#> 1.000 0.000 0.000 0.000
#> 0.000 1.000 0.000 0.000
#> 0.000 0.000 1.000 0.000
#> 0.000 0.000 0.000 1.000
#>
#> >> Bounding Box
#> Min Corner: 0.0, 0.0, 0.0 mm
#> Max Corner: 63.0, 63.0, 63.0 mm
#>
#> ==================================================
When we’re ready to write an image volume to disk, we use
write_vol
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.