The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Reading a NIFTI formatted image volume

The easiest way to read an image file is to use loadVolume:

    fileName <- system.file("extdata", "global_mask.nii", package="neuroim")
    vol <- loadVolume(fileName)

Working with image volumes

Information about the geometry of the image volume is easily accessed:

    print(vol)
#> BrainVolume
#>   Type           : DenseBrainVolume 
#>   Dimension      : 64 64 25 
#>   Spacing        : 3.5  X  3.5  X  3.70000004768372 
#>   Origin         : 110  X  -110  X  -46.25 
#>   Axes           : Right-to-Left Posterior-to-Anterior Inferior-to-Superior

loadVolume returns an object of class DenseBrainVolume which extends an R array' and has 3 dimensions (x,y,z).

    class(vol)
#> [1] "DenseBrainVolume"
#> attr(,"package")
#> [1] "neuroim"

    is.array(vol)
#> [1] TRUE

    dim(vol)
#> [1] 64 64 25

    vol[1,1,1]
#> [1] 0

    vol[64,64,24]
#> [1] 0

Arithmetic can be performed on images as if they were ordinary arrays:


    vol2 <- vol + vol
    sum(vol2) == 2 * sum(vol)
#> [1] TRUE

    vol3 <- vol2 - 2*vol
    all(vol3 == 0)
#> [1] TRUE

A numeric image volume can be converted to a binary image as follows:


    vol2 <- as.logical(vol)
    print(vol2[1,1,1])
#> [1] FALSE

We can also create a BrainVolume instance from an array or numeric vector:

    # create an 64X64X64 array of zeros 
    x <- array(0, c(64,64,64))

    # create a 'BrainSpace' instance that describes the geometry of the image including, at minimu its dimensions and voxel spacing
    bspace <- BrainSpace(Dim=c(64,64,64), spacing=c(1,1,1))
    vol <- BrainVolume(x, bspace)
    vol
#> BrainVolume
#>   Type           : DenseBrainVolume 
#>   Dimension      : 64 64 64 
#>   Spacing        : 1  X  1  X  1 
#>   Origin         : 0  X  0  X  0 
#>   Axes           : Left-to-Right Posterior-to-Anterior Inferior-to-Superior

We do not usually have to create BrainSpace objects because this information is usually read from disk. Thus, BrainSpace objects are usually copied from existing images using the space extractor function when needed:

    vol2 <- BrainVolume((vol+1)*25, space(vol))
    max(vol2)
#> [1] 25

    space(vol2)
#> BrainSpace
#>   Type           : BrainSpace 
#>   Dimension      : 64 64 64 
#>   Spacing        : 1  X  1  X  1 
#>   Origin         : 0  X  0  X  0 
#>   Coordinate Transform : 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Writing a NIFTI formatted image volume

When we're ready to write an image volume to disk, we use writeVolume

    writeVolume(vol2, "output.nii")

    ## adding a '.gz' extension results ina gzipped file.
    writeVolume(vol2, "output.nii.gz")

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.