The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

naivebayes: High Performance Implementation of the Naive Bayes Algorithm

In this implementation of the Naive Bayes classifier following class conditional distributions are available: 'Bernoulli', 'Categorical', 'Gaussian', 'Poisson', 'Multinomial' and non-parametric representation of the class conditional density estimated via Kernel Density Estimation. Implemented classifiers handle missing data and can take advantage of sparse data.

Version: 1.0.0
Suggests: knitr, Matrix
Published: 2024-03-16
DOI: 10.32614/CRAN.package.naivebayes
Author: Michal Majka ORCID iD [aut, cre]
Maintainer: Michal Majka <michalmajka at hotmail.com>
BugReports: https://github.com/majkamichal/naivebayes/issues
License: GPL-2
URL: https://github.com/majkamichal/naivebayes, https://majkamichal.github.io/naivebayes/
NeedsCompilation: no
Citation: naivebayes citation info
Materials: NEWS
In views: MachineLearning, MissingData
CRAN checks: naivebayes results

Documentation:

Reference manual: naivebayes.pdf
Vignettes: An Introduction to Naivebayes

Downloads:

Package source: naivebayes_1.0.0.tar.gz
Windows binaries: r-devel: naivebayes_1.0.0.zip, r-release: naivebayes_1.0.0.zip, r-oldrel: naivebayes_1.0.0.zip
macOS binaries: r-release (arm64): naivebayes_1.0.0.tgz, r-oldrel (arm64): naivebayes_1.0.0.tgz, r-release (x86_64): naivebayes_1.0.0.tgz, r-oldrel (x86_64): naivebayes_1.0.0.tgz
Old sources: naivebayes archive

Reverse dependencies:

Reverse imports: AnimalSequences, MLFS, ModTools, nproc, PrInCE, promor
Reverse suggests: discrim, FRESA.CAD, quanteda.textmodels, superml

Linking:

Please use the canonical form https://CRAN.R-project.org/package=naivebayes to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.