
Package ‘mvgam’
September 4, 2024

Title Multivariate (Dynamic) Generalized Additive Models

Version 1.1.3

Date 2024-09-03

Description
Fit Bayesian Dynamic Generalized Additive Models to sets of time series. Users can build dy-
namic nonlinear State-Space models that can incorporate semiparametric effects in observa-
tion and process components, using a wide range of observation families. Estimation is per-
formed using Markov Chain Monte Carlo with Hamiltonian Monte Carlo in the soft-
ware 'Stan'. References: Clark & Wells (2022) <doi:10.1111/2041-210X.13974>.

URL https://github.com/nicholasjclark/mvgam,

https://nicholasjclark.github.io/mvgam/

BugReports https://github.com/nicholasjclark/mvgam/issues

License MIT + file LICENSE

Depends R (>= 3.6.0)

Imports brms (>= 2.21.0), methods, mgcv (>= 1.8-13), insight (>=
0.19.1), marginaleffects (>= 0.16.0), Rcpp (>= 0.12.0), rstan
(>= 2.29.0), posterior (>= 1.0.0), loo (>= 2.3.1), rstantools
(>= 2.1.1), bayesplot (>= 1.5.0), ggplot2 (>= 2.0.0), parallel,
pbapply, mvnfast, purrr, zoo, smooth, dplyr, magrittr, Matrix,
rlang

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Suggests scoringRules, matrixStats, cmdstanr (>= 0.5.0), tweedie,
splines2, extraDistr, wrswoR, xts, lubridate, knitr, collapse,
rmarkdown, rjags, coda, runjags, usethis, testthat

Enhances gratia (>= 0.9.0), tibble (>= 3.0.0), tidyr

Additional_repositories https://mc-stan.org/r-packages/

LinkingTo Rcpp, RcppArmadillo

VignetteBuilder knitr

1

https://doi.org/10.1111/2041-210X.13974
https://github.com/nicholasjclark/mvgam
https://nicholasjclark.github.io/mvgam/
https://github.com/nicholasjclark/mvgam/issues
https://mc-stan.org/r-packages/

2 Contents

NeedsCompilation yes

Author Nicholas J Clark [aut, cre] (<https://orcid.org/0000-0001-7131-3301>)

Maintainer Nicholas J Clark <nicholas.j.clark1214@gmail.com>

Repository CRAN

Date/Publication 2024-09-04 03:40:02 UTC

Contents
add_residuals.mvgam . 3
all_neon_tick_data . 4
code . 5
conditional_effects.mvgam . 6
dynamic . 8
ensemble.mvgam_forecast . 11
evaluate_mvgams . 13
fitted.mvgam . 16
forecast.mvgam . 18
formula.mvgam . 20
get_mvgam_priors . 21
GP . 27
gratia_mvgam_enhancements . 28
hindcast.mvgam . 33
index-mvgam . 34
irf.mvgam . 35
lfo_cv.mvgam . 36
logLik.mvgam . 39
loo.mvgam . 41
lv_correlations . 43
mcmc_plot.mvgam . 44
model.frame.mvgam . 45
monotonic . 46
mvgam . 49
mvgam-class . 62
mvgam_diagnostics . 64
mvgam_draws . 65
mvgam_families . 68
mvgam_forecast-class . 72
mvgam_formulae . 73
mvgam_irf-class . 74
mvgam_marginaleffects . 75
mvgam_trends . 78
pairs.mvgam . 80
plot.mvgam . 81
plot.mvgam_irf . 83
plot.mvgam_lfo . 84
plot_mvgam_factors . 85

https://orcid.org/0000-0001-7131-3301

add_residuals.mvgam 3

plot_mvgam_forecasts . 86
plot_mvgam_pterms . 88
plot_mvgam_randomeffects . 89
plot_mvgam_resids . 89
plot_mvgam_series . 90
plot_mvgam_smooth . 92
plot_mvgam_trend . 94
plot_mvgam_uncertainty . 95
portal_data . 96
posterior_epred.mvgam . 97
posterior_linpred.mvgam . 99
posterior_predict.mvgam . 100
ppc.mvgam . 102
pp_check.mvgam . 104
predict.mvgam . 106
print.mvgam . 109
PW . 110
residuals.mvgam . 112
RW . 113
score.mvgam_forecast . 115
series_to_mvgam . 117
sim_mvgam . 118
summary.mvgam . 120
update.mvgam . 121

Index 127

add_residuals.mvgam Calculate randomized quantile residuals for mvgam objects

Description

Calculate randomized quantile residuals for mvgam objects

Usage

add_residuals(object, ...)

S3 method for class 'mvgam'
add_residuals(object, ...)

Arguments

object list object returned from mvgam. See mvgam()

... unused

4 all_neon_tick_data

Details

For each series, randomized quantile (i.e. Dunn-Smyth) residuals are calculated for inspecting
model diagnostics If the fitted model is appropriate then Dunn-Smyth residuals will be standard
normal in distribution and no autocorrelation will be evident. When a particular observation is
missing, the residual is calculated by comparing independent draws from the model’s posterior
distribution

Value

A list object of class mvgam with residuals included in the 'resids' slot

all_neon_tick_data NEON Amblyomma and Ixodes tick abundance survey data

Description

A dataset containing timeseries of Amblyomma americanum and Ixodes scapularis nymph abun-
dances at NEON sites

Usage

all_neon_tick_data

Format

A tibble/dataframe containing covariate information alongside the main fields of:

Year Year of sampling

epiWeek Epidemiological week of sampling

plot_ID NEON plot ID for survey location

siteID NEON site ID for survey location

amblyomma_americanum Counts of A. americanum nymphs

ixodes_scapularis Counts of I. scapularis nymphs

Source

https://www.neonscience.org/data

https://www.neonscience.org/data

code 5

code Stan code and data objects for mvgam models

Description

Generate Stan code and data objects for mvgam models

Usage

code(object)

S3 method for class 'mvgam_prefit'
stancode(object, ...)

S3 method for class 'mvgam'
stancode(object, ...)

S3 method for class 'mvgam_prefit'
standata(object, ...)

Arguments

object An object of class mvgam or mvgam_prefit, returned from a call to mvgam

... ignored

Value

Either a character string containing the fully commented Stan code to fit a mvgam model or a
named list containing the data objects needed to fit the model in Stan.

Examples

simdat <- sim_mvgam()
mod <- mvgam(y ~ s(season) +

s(time, by = series),
family = poisson(),
data = simdat$data_train,
run_model = FALSE)

View Stan model code
stancode(mod)

View Stan model data
sdata <- standata(mod)
str(sdata)

6 conditional_effects.mvgam

conditional_effects.mvgam

Display Conditional Effects of Predictors

Description

Display conditional effects of one or more numeric and/or categorical predictors in mvgam models,
including two-way interaction effects.

Usage

S3 method for class 'mvgam'
conditional_effects(
x,
effects = NULL,
type = "response",
points = TRUE,
rug = TRUE,
...

)

S3 method for class 'mvgam_conditional_effects'
plot(x, plot = TRUE, ask = FALSE, ...)

S3 method for class 'mvgam_conditional_effects'
print(x, ...)

Arguments

x Object of class mvgam or mvgam_conditional_effects

effects An optional character vector naming effects (main effects or interactions) for
which to compute conditional plots. Interactions are specified by a : between
variable names. If NULL (the default), plots are generated for all main effects and
two-way interactions estimated in the model. When specifying effects man-
ually, all two-way interactions (including grouping variables) may be plotted
even if not originally modeled.

type character specifying the scale of predictions. When this has the value link
(default) the linear predictor is calculated on the link scale. If expected is used,
predictions reflect the expectation of the response (the mean) but ignore uncer-
tainty in the observation process. When response is used, the predictions take
uncertainty in the observation process into account to return predictions on the
outcome scale. Two special cases are also allowed: type latent_N will re-
turn the estimated latent abundances from an N-mixture distribution, while type
detection will return the estimated detection probability from an N-mixture
distribution

conditional_effects.mvgam 7

points Logical. Indicates if the original data points should be added, but only if type
== 'response'. Default is TRUE.

rug Logical. Indicates if displays tick marks should be plotted on the axes to mark
the distribution of raw data, but only if type == 'response'. Default is TRUE.

... other arguments to pass to plot_predictions

plot Logical; indicates if plots should be plotted directly in the active graphic device.
Defaults to TRUE.

ask Logical. Indicates if the user is prompted before a new page is plotted. Only
used if plot is TRUE. Default is FALSE.

Details

This function acts as a wrapper to the more flexible plot_predictions. When creating conditional_effects
for a particular predictor (or interaction of two predictors), one has to choose the values of all other
predictors to condition on. By default, the mean is used for continuous variables and the reference
category is used for factors. Use plot_predictions to change these and create more bespoke
conditional effects plots.

Value

conditional_effects returns an object of class mvgam_conditional_effects which is a named
list with one slot per effect containing a ggplot object, which can be further customized using the
ggplot2 package. The corresponding plot method will draw these plots in the active graphic device

Author(s)

Nicholas J Clark

See Also

plot_predictions, plot_slopes

Examples

Simulate some data
simdat <- sim_mvgam(family = poisson(),

seasonality = 'hierarchical')

Fit a model
mod <- mvgam(y ~ s(season, by = series, k = 5) + year:series,

family = poisson(),
data = simdat$data_train,
chains = 2)

Plot all main effects on the response scale
conditional_effects(mod)

Change the prediction interval to 70% using plot_predictions() argument
'conf_level'
conditional_effects(mod, conf_level = 0.7)

8 dynamic

Plot all main effects on the link scale
conditional_effects(mod, type = 'link')

Works the same for smooth terms, including smooth interactions
set.seed(0)
dat <- mgcv::gamSim(1, n = 200, scale = 2)
mod <- mvgam(y ~ te(x0, x1, k = 5) + s(x2, k = 6) + s(x3, k = 6),

data = dat,
family = gaussian(),
chains = 2)

conditional_effects(mod)
conditional_effects(mod, conf_level = 0.5, type = 'link')

Not run:
ggplot objects can be modified and combined with the help of many
additional packages. Here is an example using the patchwork package

Simulate some nonlinear data
dat <- mgcv::gamSim(1, n = 200, scale = 2)
mod <- mvgam(y ~ s(x1, bs = 'moi') +

te(x0, x2),
data = dat,
family = gaussian())

Extract the list of ggplot conditional_effect plots
m <- plot(conditional_effects(mod), plot = FALSE)

Add custom labels and arrange plots together using patchwork::wrap_plots()
library(patchwork)
library(ggplot2)
wrap_plots(m[[1]] + labs(title = 's(x1, bs = "moi")'),

m[[2]] + labs(title = 'te(x0, x2)'))

End(Not run)

dynamic Defining dynamic coefficients in mvgam formulae

Description

Set up time-varying (dynamic) coefficients for use in mvgam models. Currently, only low-rank
Gaussian Process smooths are available for estimating the dynamics of the time-varying coefficient.

Usage

dynamic(variable, k, rho = 5, stationary = TRUE, scale = TRUE)

dynamic 9

Arguments

variable The variable that the dynamic smooth will be a function of

k Optional number of basis functions for computing approximate GPs. If missing,
k will be set as large as possible to accurately estimate the nonlinear function

rho Either a positive numeric stating the length scale to be used for approximating
the squared exponential Gaussian Process smooth (see gp.smooth for details) or
missing, in which case the length scale will be estimated by setting up a Hilbert
space approximate GP

stationary Logical. If TRUE (the default) and rho is supplied, the latent Gaussian Process
smooth will not have a linear trend component. If FALSE, a linear trend in the
covariate is added to the Gaussian Process smooth. Leave at TRUE if you do
not believe the coefficient is evolving with much trend, as the linear component
of the basis functions can be hard to penalize to zero. This sometimes causes
divergence issues in Stan. See gp.smooth for details. Ignored if rho is missing
(in which case a Hilbert space approximate GP is used)

scale Logical; If TRUE (the default) and rho is missing, predictors are scaled so that
the maximum Euclidean distance between two points is 1. This often improves
sampling speed and convergence. Scaling also affects the estimated length-scale
parameters in that they resemble those of scaled predictors (not of the original
predictors) if scale is TRUE.

Details

mvgam currently sets up dynamic coefficients as low-rank squared exponential Gaussian Process
smooths via the call s(time, by = variable, bs = "gp", m = c(2, rho, 2)). These smooths, if
specified with reasonable values for the length scale parameter, will give more realistic out of sample
forecasts than standard splines such as thin plate or cubic. But the user must set the value for rho,
as there is currently no support for estimating this value in mgcv. This may not be too big of a
problem, as estimating latent length scales is often difficult anyway. The rho parameter should be
thought of as a prior on the smoothness of the latent dynamic coefficient function (where higher
values of rho lead to smoother functions with more temporal covariance structure. Values of k are
set automatically to ensure enough basis functions are used to approximate the expected wiggliness
of the underlying dynamic function (k will increase as rho decreases)

Value

a list object for internal usage in ’mvgam’

Author(s)

Nicholas J Clark

Examples

Simulate a time-varying coefficient
(as a Gaussian Process with length scale = 10)
set.seed(1111)
N <- 200

10 dynamic

A function to simulate from a squared exponential Gaussian Process
sim_gp = function(N, c, alpha, rho){
Sigma <- alpha ^ 2 *

exp(-0.5 * ((outer(1:N, 1:N, "-") / rho) ^ 2)) +
diag(1e-9, N)

c + mgcv::rmvn(1,
mu = rep(0, N),
V = Sigma)

}

beta <- sim_gp(alpha = 0.75,
rho = 10,
c = 0.5,
N = N)

plot(beta, type = 'l', lwd = 3,
bty = 'l', xlab = 'Time',
ylab = 'Coefficient',
col = 'darkred')

Simulate the predictor as a standard normal
predictor <- rnorm(N, sd = 1)

Simulate a Gaussian outcome variable
out <- rnorm(N, mean = 4 + beta * predictor,

sd = 0.25)
time <- seq_along(predictor)
plot(out, type = 'l', lwd = 3,

bty = 'l', xlab = 'Time', ylab = 'Outcome',
col = 'darkred')

Gather into a data.frame and fit a dynamic coefficient model
data <- data.frame(out, predictor, time)

Split into training and testing
data_train <- data[1:190,]
data_test <- data[191:200,]

Fit a model using the dynamic function
mod <- mvgam(out ~

mis-specify the length scale slightly as this
won't be known in practice
dynamic(predictor, rho = 8, stationary = TRUE),
family = gaussian(),
data = data_train,
chains = 2)

Inspect the summary
summary(mod)

Plot the time-varying coefficient estimates
plot(mod, type = 'smooths')

ensemble.mvgam_forecast 11

Extrapolate the coefficient forward in time
plot_mvgam_smooth(mod, smooth = 1, newdata = data)
abline(v = 190, lty = 'dashed', lwd = 2)

Overlay the true simulated time-varying coefficient
lines(beta, lwd = 2.5, col = 'white')
lines(beta, lwd = 2)

ensemble.mvgam_forecast

Combine mvgam forecasts into evenly weighted ensembles

Description

Generate evenly weighted ensemble forecast distributions from mvgam_forecast objects

Usage

ensemble(object, ...)

S3 method for class 'mvgam_forecast'
ensemble(object, ..., ndraws = 5000)

Arguments

object list object of class mvgam_forecast. See forecast.mvgam()

... More mvgam_forecast objects.

ndraws Positive integer specifying the number of draws to use from each forecast distri-
bution for creating the ensemble. If some of the ensemble members have fewer
draws than ndraws, their forecast distributions will be resampled with replace-
ment to achieve the correct number of draws

Details

It is widely recognised in the forecasting literature that combining forecasts from different models
often results in improved forecast accuracy. The simplest way to create an ensemble is to use evenly
weighted combinations of forecasts from the different models. This is straightforward to do in a
Bayesian setting with mvgam as the posterior MCMC draws contained in each mvgam_forecast
object will already implicitly capture correlations among the temporal posterior predictions.

Value

An object of class mvgam_forecast containing the ensemble predictions. This object can be readily
used with the supplied S3 functions plot and score

12 ensemble.mvgam_forecast

Author(s)

Nicholas J Clark

See Also

plot.mvgam_forecast, score.mvgam_forecast

Examples

Simulate some series and fit a few competing dynamic models
set.seed(1)
simdat <- sim_mvgam(n_series = 1,

prop_trend = 0.6,
mu = 1)

plot_mvgam_series(data = simdat$data_train,
newdata = simdat$data_test)

m1 <- mvgam(y ~ 1,
trend_formula = ~ time +

s(season, bs = 'cc', k = 9),
trend_model = AR(p = 1),
noncentred = TRUE,
data = simdat$data_train,
newdata = simdat$data_test)

m2 <- mvgam(y ~ time,
trend_model = RW(),
noncentred = TRUE,
data = simdat$data_train,
newdata = simdat$data_test)

Calculate forecast distributions for each model
fc1 <- forecast(m1)
fc2 <- forecast(m2)

Generate the ensemble forecast
ensemble_fc <- ensemble(fc1, fc2)

Plot forecasts
plot(fc1)
plot(fc2)
plot(ensemble_fc)

Score forecasts
score(fc1)
score(fc2)
score(ensemble_fc)

evaluate_mvgams 13

evaluate_mvgams Evaluate forecasts from fitted mvgam objects

Description

Evaluate forecasts from fitted mvgam objects

Usage

eval_mvgam(
object,
n_samples = 5000,
eval_timepoint = 3,
fc_horizon = 3,
n_cores = 2,
score = "drps",
log = FALSE,
weights

)

roll_eval_mvgam(
object,
n_evaluations = 5,
evaluation_seq,
n_samples = 5000,
fc_horizon = 3,
n_cores = 2,
score = "drps",
log = FALSE,
weights

)

compare_mvgams(
model1,
model2,
n_samples = 1000,
fc_horizon = 3,
n_evaluations = 10,
n_cores = 2,
score = "drps",
log = FALSE,
weights

)

Arguments

object list object returned from mvgam

14 evaluate_mvgams

n_samples integer specifying the number of samples to generate from the model’s poste-
rior distribution

eval_timepoint integer indexing the timepoint that represents our last ’observed’ set of out-
come data

fc_horizon integer specifying the length of the forecast horizon for evaluating forecasts

n_cores integer specifying number of cores for generating particle forecasts in parallel

score character specifying the type of ranked probability score to use for evaluation.
Options are: variogram, drps or crps

log logical. Should the forecasts and truths be logged prior to scoring? This is
often appropriate for comparing performance of models when series vary in
their observation ranges

weights optional vector of weights (where length(weights) == n_series) for weight-
ing pairwise correlations when evaluating the variogram score for multivariate
forecasts. Useful for down-weighting series that have larger magnitude ob-
servations or that are of less interest when forecasting. Ignored if score !=
'variogram'

n_evaluations integer specifying the total number of evaluations to perform

evaluation_seq Optional integer sequence specifying the exact set of timepoints for evaluat-
ing the model’s forecasts. This sequence cannot have values <3 or > max(training
timepoints) - fc_horizon

model1 list object returned from mvgam representing the first model to be evaluated

model2 list object returned from mvgam representing the second model to be evaluated

Details

eval_mvgam may be useful when both repeated fitting of a model using update.mvgam for exact
leave-future-out cross-validation and approximate leave-future-out cross-validation using lfo_cv
are impractical. The function generates a set of samples representing fixed parameters estimated
from the full mvgam model and latent trend states at a given point in time. The trends are rolled for-
ward a total of fc_horizon timesteps according to their estimated state space dynamics to generate
an ’out-of-sample’ forecast that is evaluated against the true observations in the horizon window.
This function therefore simulates a situation where the model’s parameters had already been esti-
mated but we have only observed data up to the evaluation timepoint and would like to generate
forecasts from the latent trends that have been observed up to that timepoint. Evaluation involves
calculating an appropriate Rank Probability Score and a binary indicator for whether or not the true
value lies within the forecast’s 90% prediction interval

roll_eval_mvgam sets up a sequence of evaluation timepoints along a rolling window and itera-
tively calls eval_mvgam to evaluate ’out-of-sample’ forecasts. Evaluation involves calculating the
Rank Probability Scores and a binary indicator for whether or not the true value lies within the
forecast’s 90% prediction interval

compare_mvgams automates the evaluation to compare two fitted models using rolling window fore-
cast evaluation and provides a series of summary plots to facilitate model selection. It is essentially
a wrapper for roll_eval_mvgam

evaluate_mvgams 15

Value

For eval_mvgam, a list object containing information on specific evaluations for each series (if
using drps or crps as the score) or a vector of scores when using variogram.

For roll_eval_mvgam, a list object containing information on specific evaluations for each series
as well as a total evaluation summary (taken by summing the forecast score for each series at each
evaluation and averaging the coverages at each evaluation)

For compare_mvgams, a series of plots comparing forecast Rank Probability Scores for each com-
peting model. A lower score is preferred. Note however that it is possible to select a model that
ultimately would perform poorly in true out-of-sample forecasting. For example if a wiggly smooth
function of ’year’ is included in the model then this function will be learned prior to evaluating
rolling window forecasts, and the model could generate very tight predictions as a result. But when
forecasting ahead to timepoints that the model has not seen (i.e. next year), the smooth function will
end up extrapolating, sometimes in very strange and unexpected ways. It is therefore recommended
to only use smooth functions for covariates that are adequately measured in the data (i.e. ’seasonal-
ity’, for example) to reduce possible extrapolation of smooths and let the latent trends in the mvgam
model capture any temporal dependencies in the data. These trends are time series models and so
will provide much more stable forecasts

See Also

forecast, score, lfo_cv

Examples

Not run:
Simulate from a Poisson-AR2 model with a seasonal smooth
set.seed(100)
dat <- sim_mvgam(T = 75,

n_series = 1,
prop_trend = 0.75,
trend_model = 'AR2',
family = poisson())

Fit an appropriate model
mod_ar2 <- mvgam(y ~ s(season, bs = 'cc'),

trend_model = AR(p = 2),
family = poisson(),
data = dat$data_train,
newdata = dat$data_test,
chains = 2)

Fit a less appropriate model
mod_rw <- mvgam(y ~ s(season, bs = 'cc'),

trend_model = RW(),
family = poisson(),
data = dat$data_train,
newdata = dat$data_test,
chains = 2)

16 fitted.mvgam

Compare Discrete Ranked Probability Scores for the testing period
fc_ar2 <- forecast(mod_ar2)
fc_rw <- forecast(mod_rw)
score_ar2 <- score(fc_ar2, score = 'drps')
score_rw <- score(fc_rw, score = 'drps')
sum(score_ar2$series_1$score)
sum(score_rw$series_1$score)

Use rolling evaluation for approximate comparisons of 3-step ahead
forecasts across the training period
compare_mvgams(mod_ar2,

mod_rw,
fc_horizon = 3,
n_samples = 1000,
n_evaluations = 5)

Now use approximate leave-future-out CV to compare
rolling forecasts; start at time point 40 to reduce
computational time and to ensure enough data is available
for estimating model parameters
lfo_ar2 <- lfo_cv(mod_ar2,

min_t = 40,
fc_horizon = 3)

lfo_rw <- lfo_cv(mod_rw,
min_t = 40,
fc_horizon = 3)

Plot Pareto-K values and ELPD estimates
plot(lfo_ar2)
plot(lfo_rw)

Proportion of timepoints in which AR2 model gives
better forecasts
length(which((lfo_ar2$elpds - lfo_rw$elpds) > 0)) /

length(lfo_ar2$elpds)

A higher total ELPD is preferred
lfo_ar2$sum_ELPD
lfo_rw$sum_ELPD

End(Not run)

fitted.mvgam Expected Values of the Posterior Predictive Distribution

Description

This method extracts posterior estimates of the fitted values (i.e. the actual predictions, included
estimates for any trend states, that were obtained when fitting the model). It also includes an option
for obtaining summaries of the computed draws.

fitted.mvgam 17

Usage

S3 method for class 'mvgam'
fitted(
object,
process_error = TRUE,
scale = c("response", "linear"),
summary = TRUE,
robust = FALSE,
probs = c(0.025, 0.975),
...

)

Arguments

object An object of class mvgam

process_error Logical. If TRUE and a dynamic trend model was fit, expected uncertainty in
the process model is accounted for by using draws from the latent trend SD
parameters. If FALSE, uncertainty in the latent trend component is ignored when
calculating predictions

scale Either "response" or "linear". If "response", results are returned on the
scale of the response variable. If "linear", results are returned on the scale of
the linear predictor term, that is without applying the inverse link function or
other transformations.

summary Should summary statistics be returned instead of the raw values? Default is
TRUE..

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

... Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

Details

This method gives the actual fitted values from the model (i.e. what you will see if you generate
hindcasts from the fitted model using hindcast.mvgam with type = 'expected'). These predic-
tions can be overly precise if a flexible dynamic trend component was included in the model. This
is in contrast to the set of predict functions (i.e. posterior_epred.mvgam or predict.mvgam),
which will assume any dynamic trend component has reached stationarity when returning hypo-
thetical predictions

Value

An array of predicted mean response values. If summary = FALSE the output resembles those of
posterior_epred.mvgam and predict.mvgam.

18 forecast.mvgam

If summary = TRUE the output is an n_observations x E matrix. The number of summary statistics
E is equal to 2 + length(probs): The Estimate column contains point estimates (either mean or
median depending on argument robust), while the Est.Error column contains uncertainty esti-
mates (either standard deviation or median absolute deviation depending on argument robust). The
remaining columns starting with Q contain quantile estimates as specified via argument probs.

See Also

hindcast.mvgam

Examples

Not run:
Simulate some data and fit a model
simdat <- sim_mvgam(n_series = 1, trend_model = 'AR1')
mod <- mvgam(y ~ s(season, bs = 'cc'),

trend_model = 'AR1',
data = simdat$data_train,
chains = 2,
burnin = 300,
samples = 300)

Extract fitted values (posterior expectations)
expectations <- fitted(mod)
str(expectations)

End(Not run)

forecast.mvgam Extract or compute hindcasts and forecasts for a fitted mvgam object

Description

Extract or compute hindcasts and forecasts for a fitted mvgam object

Usage

forecast(object, ...)

S3 method for class 'mvgam'
forecast(object, newdata, data_test, n_cores = 1, type = "response", ...)

Arguments

object list object returned from mvgam. See mvgam()

... Ignored

forecast.mvgam 19

newdata Optional dataframe or list of test data containing at least ’series’ and ’time’
in addition to any other variables included in the linear predictor of the origi-
nal formula. If included, the covariate information in newdata will be used to
generate forecasts from the fitted model equations. If this same newdata was
originally included in the call to mvgam, then forecasts have already been pro-
duced by the generative model and these will simply be extracted and plotted.
However if no newdata was supplied to the original model call, an assumption
is made that the newdata supplied here comes sequentially after the data sup-
plied in the original model (i.e. we assume there is no time gap between the last
observation of series 1 in the original data and the first observation for series 1
in newdata)

data_test Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

n_cores integer specifying number of cores for generating forecasts in parallel

type When this has the value link (default) the linear predictor is calculated on the
link scale. If expected is used, predictions reflect the expectation of the re-
sponse (the mean) but ignore uncertainty in the observation process. When
response is used, the predictions take uncertainty in the observation process
into account to return predictions on the outcome scale. When variance is
used, the variance of the response with respect to the mean (mean-variance re-
lationship) is returned. When type = "terms", each component of the linear
predictor is returned separately in the form of a list (possibly with standard er-
rors, if summary = TRUE): this includes parametric model components, followed
by each smooth component, but excludes any offset and any intercept. Two
special cases are also allowed: type latent_N will return the estimated latent
abundances from an N-mixture distribution, while type detection will return
the estimated detection probability from an N-mixture distribution

Details

Posterior predictions are drawn from the fitted mvgam and used to simulate a forecast distribution

Value

An object of class mvgam_forecast containing hindcast and forecast distributions. See mvgam_forecast-class
for details.

See Also

hindcast, score, ensemble

Examples

simdat <- sim_mvgam(n_series = 3, trend_model = AR())
mod <- mvgam(y ~ s(season, bs = 'cc', k = 6),

trend_model = AR(),
noncentred = TRUE,
data = simdat$data_train,
chains = 2)

20 formula.mvgam

Hindcasts on response scale
hc <- hindcast(mod)
str(hc)
plot(hc, series = 1)
plot(hc, series = 2)
plot(hc, series = 3)

Forecasts on response scale
fc <- forecast(mod, newdata = simdat$data_test)
str(fc)
plot(fc, series = 1)
plot(fc, series = 2)
plot(fc, series = 3)

Forecasts as expectations
fc <- forecast(mod, newdata = simdat$data_test, type = 'expected')
plot(fc, series = 1)
plot(fc, series = 2)
plot(fc, series = 3)

Dynamic trend extrapolations
fc <- forecast(mod, newdata = simdat$data_test, type = 'trend')
plot(fc, series = 1)
plot(fc, series = 2)
plot(fc, series = 3)

formula.mvgam Extract formulae from mvgam objects

Description

Extract formulae from mvgam objects

Usage

S3 method for class 'mvgam'
formula(x, trend_effects = FALSE, ...)

S3 method for class 'mvgam_prefit'
formula(x, trend_effects = FALSE, ...)

Arguments

x mvgam or mvgam_prefit object

trend_effects logical, return the formula from the observation model (if FALSE) or from the
underlying process model (ifTRUE)

... Ignored

get_mvgam_priors 21

Value

A formula object

Author(s)

Nicholas J Clark

get_mvgam_priors Extract information on default prior distributions for an mvgam model

Description

This function lists the parameters that can have their prior distributions changed for a given mvgam
model, as well listing their default distributions

Usage

get_mvgam_priors(
formula,
trend_formula,
data,
data_train,
family = "poisson",
knots,
trend_knots,
use_lv = FALSE,
n_lv,
use_stan = TRUE,
trend_model = "None",
trend_map,
drift = FALSE

)

Arguments

formula A character string specifying the GAM observation model formula. These are
exactly like the formula for a GLM except that smooth terms, s(), te(), ti(),
t2(), as well as time-varying dynamic() terms, can be added to the right hand
side to specify that the linear predictor depends on smooth functions of pre-
dictors (or linear functionals of these). In nmix() family models, the formula
is used to set up a linear predictor for the detection probability. Details of the
formula syntax used by mvgam can be found in mvgam_formulae

trend_formula An optional character string specifying the GAM process model formula. If
supplied, a linear predictor will be modelled for the latent trends to capture pro-
cess model evolution separately from the observation model. Should not have
a response variable specified on the left-hand side of the formula (i.e. a valid

22 get_mvgam_priors

option would be ~ season + s(year)). Also note that you should not use the
identifier series in this formula to specify effects that vary across time se-
ries. Instead you should use trend. This will ensure that models in which a
trend_map is supplied will still work consistently (i.e. by allowing effects to
vary across process models, even when some time series share the same under-
lying process model). This feature is only currently available for RW(), AR()
and VAR() trend models. In nmix() family models, the trend_formula is used
to set up a linear predictor for the underlying latent abundance. Be aware that
it can be very challenging to simultaneously estimate intercept parameters for
both the observation mode (captured by formula) and the process model (cap-
tured by trend_formula). Users are recommended to drop one of these using
the - 1 convention in the formula right hand side.

data A dataframe or list containing the model response variable and covariates
required by the GAM formula and optional trend_formula. Should include
columns: #’

• series (a factor index of the series IDs; the number of levels should be
identical to the number of unique series labels (i.e. n_series = length(levels(data$series))))

• time (numeric or integer index of the time point for each observation).
For most dynamic trend types available in mvgam (see argument trend_model),
time should be measured in discrete, regularly spaced intervals (i.e. c(1,
2, 3, ...)). However you can use irregularly spaced intervals if using
trend_model = CAR(1), though note that any temporal intervals that are
exactly 0 will be adjusted to a very small number (1e-12) to prevent sam-
pling errors. See an example of CAR() trends in CAR

Should also include any other variables to be included in the linear predictor of
formula

data_train Deprecated. Still works in place of data but users are recommended to use data
instead for more seamless integration into R workflows

family family specifying the exponential observation family for the series. Currently
supported families are:

• gaussian() for real-valued data
• betar() for proportional data on (0,1)

• lognormal() for non-negative real-valued data
• student_t() for real-valued data
• Gamma() for non-negative real-valued data
• bernoulli() for binary data
• poisson() for count data
• nb() for overdispersed count data
• binomial() for count data with imperfect detection when the number of

trials is known; note that the cbind() function must be used to bind the
discrete observations and the discrete number of trials

• beta_binomial() as for binomial() but allows for overdispersion
• nmix() for count data with imperfect detection when the number of trials

is unknown and should be modeled via a State-Space N-Mixture model.
The latent states are Poisson, capturing the ’true’ latent abundance, while

get_mvgam_priors 23

the observation process is Binomial to account for imperfect detection. See
mvgam_families for an example of how to use this family

Note that only nb() and poisson() are available if using JAGS as the backend.
Default is poisson(). See mvgam_families for more details

knots An optional list containing user specified knot values to be used for basis con-
struction. For most bases the user simply supplies the knots to be used, which
must match up with the k value supplied (note that the number of knots is not
always just k). Different terms can use different numbers of knots, unless they
share a covariate

trend_knots As for knots above, this is an optional list of knot values for smooth functions
within the trend_formula

use_lv logical. If TRUE, use dynamic factors to estimate series’ latent trends in a re-
duced dimension format. Only available for RW(), AR() and GP() trend models.
Defaults to FALSE

n_lv integer the number of latent dynamic factors to use if use_lv == TRUE. Cannot
be > n_series. Defaults arbitrarily to min(2, floor(n_series / 2))

use_stan Logical. If TRUE, the model will be compiled and sampled using Hamiltonian
Monte Carlo with a call to cmdstan_model or a call to stan. Note that there are
many more options when using Stan vs JAGS

trend_model character or function specifying the time series dynamics for the latent trend.
Options are:

• None (no latent trend component; i.e. the GAM component is all that
contributes to the linear predictor, and the observation process is the only
source of error; similarly to what is estimated by gam)

• 'RW' or RW()
• 'AR1' or AR(p = 1)

• 'AR2' or AR(p = 2)

• 'AR3' or AR(p = 3)

• 'CAR1' or CAR(p = 1)

• 'VAR1' or VAR()(only available in Stan)
• 'PWlogistic, 'PWlinear' or PW() (only available in Stan)
• 'GP' or GP() (Gaussian Process with squared exponential kernel; only

available in Stan)

For all trend types apart from GP(), CAR() and PW(), moving average and/or cor-
related process error terms can also be estimated (for example, RW(cor = TRUE)
will set up a multivariate Random Walk if n_series > 1). See mvgam_trends
for more details

trend_map Optional data.frame specifying which series should depend on which latent
trends. Useful for allowing multiple series to depend on the same latent trend
process, but with different observation processes. If supplied, a latent factor
model is set up by setting use_lv = TRUE and using the mapping to set up the
shared trends. Needs to have column names series and trend, with integer
values in the trend column to state which trend each series should depend on.
The series column should have a single unique entry for each series in the data

24 get_mvgam_priors

(names should perfectly match factor levels of the series variable in data).
Note that if this is supplied, the intercept parameter in the process model will
NOT be automatically suppressed. See examples for details

drift Deprecated. If you wish to estimate drift parameters, include parametric fixed
effects of ’time’ in your formulae instead.

Details

Users can supply a model formula, prior to fitting the model, so that default priors can be inspected
and altered. To make alterations, change the contents of the prior column and supplying this
data.frame to the mvgam function using the argument priors. If using Stan as the backend, users
can also modify the parameter bounds by modifying the new_lowerbound and/or new_upperbound
columns. This will be necessary if using restrictive distributions on some parameters, such as a
Beta distribution for the trend sd parameters for example (Beta only has support on (0,1)), so the
upperbound cannot be above 1. Another option is to make use of the prior modification functions
in brms (i.e. prior) to change prior distributions and bounds (just use the name of the parameter
that you’d like to change as the class argument; see examples below)

Value

either a data.frame containing the prior definitions (if any suitable priors can be altered by the
user) or NULL, indicating that no priors in the model can be modified through the mvgam interface

Note

Only the prior, new_lowerbound and/or new_upperbound columns of the output should be altered
when defining the user-defined priors for the mvgam model. Use only if you are familiar with the
underlying probabilistic programming language. There are no sanity checks done to ensure that the
code is legal (i.e. to check that lower bounds are smaller than upper bounds, for example)

Author(s)

Nicholas J Clark

See Also

mvgam, mvgam_formulae, prior

Examples

Simulate three integer-valued time series
library(mvgam)
dat <- sim_mvgam(trend_rel = 0.5)

Get a model file that uses default mvgam priors for inspection (not always necessary,
but this can be useful for testing whether your updated priors are written correctly)
mod_default <- mvgam(y ~ s(series, bs = 're') +

s(season, bs = 'cc') - 1,
family = nb(),
data = dat$data_train,

get_mvgam_priors 25

trend_model = AR(p = 2),
run_model = FALSE)

Inspect the model file with default mvgam priors
code(mod_default)

Look at which priors can be updated in mvgam
test_priors <- get_mvgam_priors(y ~ s(series, bs = 're') +

s(season, bs = 'cc') - 1,
family = nb(),
data = dat$data_train,
trend_model = AR(p = 2))

test_priors

Make a few changes; first, change the population mean for the series-level
random intercepts
test_priors$prior[2] <- 'mu_raw ~ normal(0.2, 0.5);'

Now use stronger regularisation for the series-level AR2 coefficients
test_priors$prior[5] <- 'ar2 ~ normal(0, 0.25);'

Check that the changes are made to the model file without any warnings by
setting 'run_model = FALSE'
mod <- mvgam(y ~ s(series, bs = 're') +

s(season, bs = 'cc') - 1,
family = nb(),
data = dat$data_train,
trend_model = AR(p = 2),
priors = test_priors,
run_model = FALSE)

code(mod)

No warnings, the model is ready for fitting now in the usual way with the addition
of the 'priors' argument

The same can be done using 'brms' functions; here we will also change the ar1 prior
and put some bounds on the ar coefficients to enforce stationarity; we set the
prior using the 'class' argument in all brms prior functions
brmsprior <- c(prior(normal(0.2, 0.5), class = mu_raw),

prior(normal(0, 0.25), class = ar1, lb = -1, ub = 1),
prior(normal(0, 0.25), class = ar2, lb = -1, ub = 1))

brmsprior

mod <- mvgam(y ~ s(series, bs = 're') +
s(season, bs = 'cc') - 1,

family = nb(),
data = dat$data_train,
trend_model = AR(p = 2),
priors = brmsprior,
run_model = FALSE)

code(mod)

Look at what is returned when an incorrect spelling is used

26 get_mvgam_priors

test_priors$prior[5] <- 'ar2_bananas ~ normal(0, 0.25);'
mod <- mvgam(y ~ s(series, bs = 're') +

s(season, bs = 'cc') - 1,
family = nb(),
data = dat$data_train,
trend_model = AR(p = 2),
priors = test_priors,
run_model = FALSE)

code(mod)

Example of changing parametric (fixed effect) priors
simdat <- sim_mvgam()

Add a fake covariate
simdat$data_train$cov <- rnorm(NROW(simdat$data_train))

priors <- get_mvgam_priors(y ~ cov + s(season),
data = simdat$data_train,
family = poisson(),
trend_model = AR())

Change priors for the intercept and fake covariate effects
priors$prior[1] <- '(Intercept) ~ normal(0, 1);'
priors$prior[2] <- 'cov ~ normal(0, 0.1);'

mod2 <- mvgam(y ~ cov + s(season),
data = simdat$data_train,
trend_model = AR(),
family = poisson(),
priors = priors,
run_model = FALSE)

code(mod2)

Likewise using 'brms' utilities (note that you can use
Intercept rather than `(Intercept)`) to change priors on the intercept
brmsprior <- c(prior(normal(0.2, 0.5), class = cov),

prior(normal(0, 0.25), class = Intercept))
brmsprior

mod2 <- mvgam(y ~ cov + s(season),
data = simdat$data_train,
trend_model = AR(),
family = poisson(),
priors = brmsprior,
run_model = FALSE)

code(mod2)

The "class = 'b'" shortcut can be used to put the same prior on all
'fixed' effect coefficients (apart from any intercepts)
set.seed(0)
dat <- mgcv::gamSim(1, n = 200, scale = 2)
dat$time <- 1:NROW(dat)
mod <- mvgam(y ~ x0 + x1 + s(x2) + s(x3),

GP 27

priors = prior(normal(0, 0.75), class = 'b'),
data = dat,
family = gaussian(),
run_model = FALSE)

code(mod)

GP Specify dynamic Gaussian processes

Description

Set up low-rank approximate Gaussian Process trend models using Hilbert basis expansions in
mvgam. This function does not evaluate its arguments – it exists purely to help set up a model with
particular GP trend models.

Usage

GP(...)

Arguments

... unused

Details

A GP trend is estimated for each series using Hilbert space approximate Gaussian Processes. In
mvgam, latent squared exponential GP trends are approximated using by default 20 basis functions
and using a multiplicative factor of c = 5/4, which saves computational costs compared to fitting
full GPs while adequately estimating GP alpha and rho parameters.

Value

An object of class mvgam_trend, which contains a list of arguments to be interpreted by the parsing
functions in mvgam

See Also

gp

https://arxiv.org/abs/2004.11408

28 gratia_mvgam_enhancements

gratia_mvgam_enhancements

Enhance mvgam post-processing using gratia functionality

Description

These evaluation and plotting functions exist to allow some popular gratia methods to work with
mvgam models

Usage

drawDotmvgam(
object,
trend_effects = FALSE,
data = NULL,
select = NULL,
parametric = FALSE,
terms = NULL,
residuals = FALSE,
scales = c("free", "fixed"),
ci_level = 0.95,
n = 100,
n_3d = 16,
n_4d = 4,
unconditional = FALSE,
overall_uncertainty = TRUE,
constant = NULL,
fun = NULL,
dist = 0.1,
rug = TRUE,
contour = TRUE,
grouped_by = FALSE,
ci_alpha = 0.2,
ci_col = "black",
smooth_col = "black",
resid_col = "steelblue3",
contour_col = "black",
n_contour = NULL,
partial_match = FALSE,
discrete_colour = NULL,
discrete_fill = NULL,
continuous_colour = NULL,
continuous_fill = NULL,
position = "identity",
angle = NULL,
ncol = NULL,
nrow = NULL,

gratia_mvgam_enhancements 29

guides = "keep",
widths = NULL,
heights = NULL,
crs = NULL,
default_crs = NULL,
lims_method = "cross",
wrap = TRUE,
envir = environment(formula(object)),
...

)

eval_smoothDothilbertDotsmooth(
smooth,
model,
n = 100,
n_3d = NULL,
n_4d = NULL,
data = NULL,
unconditional = FALSE,
overall_uncertainty = TRUE,
dist = NULL,
...

)

eval_smoothDotmodDotsmooth(
smooth,
model,
n = 100,
n_3d = NULL,
n_4d = NULL,
data = NULL,
unconditional = FALSE,
overall_uncertainty = TRUE,
dist = NULL,
...

)

eval_smoothDotmoiDotsmooth(
smooth,
model,
n = 100,
n_3d = NULL,
n_4d = NULL,
data = NULL,
unconditional = FALSE,
overall_uncertainty = TRUE,
dist = NULL,
...

30 gratia_mvgam_enhancements

)

Arguments

object a fitted mvgam, the result of a call to mvgam().

trend_effects logical specifying whether smooth terms from the trend_formula should be
drawn. If FALSE, only terms from the observation formula are drawn. If TRUE,
only terms from the trend_formula are drawn.

data a data frame of covariate values at which to evaluate the model’s smooth func-
tions.

select character, logical, or numeric; which smooths to plot. If NULL, the default, then
all model smooths are drawn. Character select matches the labels for smooths
as shown for example in the output from summary(object). Logical select
operates as per numeric select in the order that smooths are stored.

parametric logical; plot parametric terms also? Note that select is used for selecting which
smooths to plot. The terms argument is used to select which parametric effects
are plotted. The default, as with mgcv::plot.gam(), is to not draw parametric
effects.

terms character; which model parametric terms should be drawn? The Default of NULL
will plot all parametric terms that can be drawn.

residuals currently ignored for mvgam models.

scales character; should all univariate smooths be plotted with the same y-axis scale? If
scales = "free", the default, each univariate smooth has its own y-axis scale.
If scales = "fixed", a common y axis scale is used for all univariate smooths.
Currently does not affect the y-axis scale of plots of the parametric terms.

ci_level numeric between 0 and 1; the coverage of credible interval.

n numeric; the number of points over the range of the covariate at which to evalu-
ate the smooth.

n_3d, n_4d numeric; the number of points over the range of last covariate in a 3D or 4D
smooth. The default is NULL which achieves the standard behaviour of using n
points over the range of all covariate, resulting in n^d evaluation points, where d
is the dimension of the smooth. For d > 2 this can result in very many evaluation
points and slow performance. For smooths of d > 4, the value of n_4d will
be used for all dimensions > 4, unless this is NULL, in which case the default
behaviour (using n for all dimensions) will be observed.

unconditional ignored for mvgam models as all appropriate uncertainties are already included
in the posterior estimates.

overall_uncertainty

ignored for mvgam models as all appropriate uncertainties are already included
in the posterior estimates.

constant numeric; a constant to add to the estimated values of the smooth. constant,
if supplied, will be added to the estimated value before the confidence band is
computed.

gratia_mvgam_enhancements 31

fun function; a function that will be applied to the estimated values and confidence
interval before plotting. Can be a function or the name of a function. Function
fun will be applied after adding any constant, if provided.

dist numeric; if greater than 0, this is used to determine when a location is too far
from data to be plotted when plotting 2-D smooths. The data are scaled into the
unit square before deciding what to exclude, and dist is a distance within the
unit square. See mgcv::exclude.too.far() for further details.

rug logical; draw a rug plot at the bottom of each plot for 1-D smooths or plot
locations of data for higher dimensions.

contour logical; should contours be draw on the plot using ggplot2::geom_contour().

grouped_by logical; should factor by smooths be drawn as one panel per level of the factor
(FALSE, the default), or should the individual smooths be combined into a single
panel containing all levels (TRUE)?

ci_alpha numeric; alpha transparency for confidence or simultaneous interval.

ci_col colour specification for the confidence/credible intervals band. Affects the fill
of the interval.

smooth_col colour specification for the smooth line.

resid_col colour specification for residual points. Ignored.

contour_col colour specification for contour lines.

n_contour numeric; the number of contour bins. Will result in n_contour - 1 contour lines
being drawn. See ggplot2::geom_contour().

partial_match logical; should smooths be selected by partial matches with select? If TRUE,
select can only be a single string to match against.

discrete_colour

a suitable colour scale to be used when plotting discrete variables.

discrete_fill a suitable fill scale to be used when plotting discrete variables.
continuous_colour

a suitable colour scale to be used when plotting continuous variables.
continuous_fill

a suitable fill scale to be used when plotting continuous variables.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

angle numeric; the angle at which the x axis tick labels are to be drawn passed to the
angle argument of ggplot2::guide_axis().

ncol, nrow numeric; the numbers of rows and columns over which to spread the plots

guides character; one of "keep" (the default), "collect", or "auto". Passed to patchwork::plot_layout()

widths, heights The relative widths and heights of each column and row in the grid. Will get
repeated to match the dimensions of the grid. If there is more than 1 plot and
widths = NULL, the value of widths will be set internally to widths = 1 to ac-
commodate plots of smooths that use a fixed aspect ratio.

crs the coordinate reference system (CRS) to use for the plot. All data will be
projected into this CRS. See ggplot2::coord_sf() for details.

32 gratia_mvgam_enhancements

default_crs the coordinate reference system (CRS) to use for the non-sf layers in the plot.
If left at the default NULL, the CRS used is 4326 (WGS84), which is appropriate
for spline-on-the-sphere smooths, which are parameterized in terms of latitude
and longitude as coordinates. See ggplot2::coord_sf() for more details.

lims_method character; affects how the axis limits are determined. See ggplot2::coord_sf().
Be careful; in testing of some examples, changing this to "orthogonal" for ex-
ample with the chlorophyll-a example from Simon Wood’s GAM book quickly
used up all the RAM in my test system and the OS killed R. This could be in-
correct usage on my part; right now the grid of points at which SOS smooths
are evaluated (if not supplied by the user) can produce invalid coordinates for
the corners of tiles as the grid is generated for tile centres without respect to the
spacing of those tiles.

wrap logical; wrap plots as a patchwork? If FALSE, a list of ggplot objects is returned,
1 per term plotted.

envir an environment to look up the data within.

... additional arguments passed to other methods.

smooth a smooth object of class "gp.smooth" (returned from a model using either
the dynamic() function or the gp() function) or of class "moi.smooth" or
"mod.smooth" (returned from a model using the ’moi’ or ’mod’ basis).

model a fitted mgcv model of clas gam or bam.

Details

These methods allow mvgam models to be Enhanced if users have the gratia package installed,
making available the popular draw() function to plot partial effects of mvgam smooth functions
using ggplot2::ggplot() utilities

Author(s)

Nicholas J Clark

Examples

Not run:
Fit a simple GAM and draw partial effects of smooths using gratia
set.seed(0)
library(ggplot2); theme_set(theme_bw())
library(gratia)
dat <- mgcv::gamSim(1, n = 200, scale = 2)
mod <- mvgam(y ~ s(x1, bs = 'moi') +

te(x0, x2), data = dat,
family = gaussian())

draw(mod)

End(Not run)

hindcast.mvgam 33

hindcast.mvgam Extract hindcasts for a fitted mvgam object

Description

Extract hindcasts for a fitted mvgam object

Usage

hindcast(object, ...)

S3 method for class 'mvgam'
hindcast(object, type = "response", ...)

Arguments

object list object returned from mvgam. See mvgam()

... Ignored

type When this has the value link (default) the linear predictor is calculated on the
link scale. If expected is used, predictions reflect the expectation of the re-
sponse (the mean) but ignore uncertainty in the observation process. When
response is used, the predictions take uncertainty in the observation process
into account to return predictions on the outcome scale. When variance is
used, the variance of the response with respect to the mean (mean-variance re-
lationship) is returned. When type = "terms", each component of the linear
predictor is returned separately in the form of a list (possibly with standard er-
rors, if summary = TRUE): this includes parametric model components, followed
by each smooth component, but excludes any offset and any intercept. Two
special cases are also allowed: type latent_N will return the estimated latent
abundances from an N-mixture distribution, while type detection will return
the estimated detection probability from an N-mixture distribution

Details

Posterior retrodictions are drawn from the fitted mvgam and organized into a convenient format

Value

An object of class mvgam_forecast containing hindcast distributions. See mvgam_forecast-class
for details.

See Also

forecast.mvgam

34 index-mvgam

Examples

simdat <- sim_mvgam(n_series = 3, trend_model = AR())
mod <- mvgam(y ~ s(season, bs = 'cc'),

trend_model = AR(),
noncentred = TRUE,
data = simdat$data_train,
chains = 2)

Hindcasts on response scale
hc <- hindcast(mod)
str(hc)
plot(hc, series = 1)
plot(hc, series = 2)
plot(hc, series = 3)

Hindcasts as expectations
hc <- hindcast(mod, type = 'expected')
str(hc)
plot(hc, series = 1)
plot(hc, series = 2)
plot(hc, series = 3)

Estimated latent trends
hc <- hindcast(mod, type = 'trend')
str(hc)
plot(hc, series = 1)
plot(hc, series = 2)
plot(hc, series = 3)

index-mvgam Index mvgam objects

Description

Index mvgam objects

Usage

S3 method for class 'mvgam'
variables(x, ...)

Arguments

x list object returned from mvgam. See mvgam()

... Arguments passed to individual methods (if applicable).

Value

a list object of the variables that can be extracted, along with their aliases

irf.mvgam 35

Examples

Not run:
simdat <- sim_mvgam(n_series = 1, trend_model = 'AR1')
mod <- mvgam(y ~ s(season, bs = 'cc', k = 6),

trend_model = AR(),
data = simdat$data_train,
burnin = 300,
samples = 300,
chains = 2)

variables(mod)

End(Not run)

irf.mvgam Calculate latent VAR impulse response functions

Description

Compute Generalized or Orthogonalized Impulse Response Functions (IRFs) from mvgam models
with Vector Autoregressive dynamics

Usage

irf(object, ...)

S3 method for class 'mvgam'
irf(object, h = 1, cumulative = FALSE, orthogonal = FALSE, ...)

Arguments

object list object of class mvgam resulting from a call to mvgam() that used a Vector
Autoregressive latent process model (either as VAR(cor = FALSE) or VAR(cor =
TRUE))

... ignored

h Positive integer specifying the forecast horizon over which to calculate the IRF

cumulative Logical flag indicating whether the IRF should be cumulative

orthogonal Logical flag indicating whether orthogonalized IRFs should be calculated. Note
that the order of the variables matters when calculating these

Details

Generalized or Orthogonalized Impulse Response Functions can be computed using the posterior
estimates of Vector Autoregressive parameters. This function generates a positive "shock" for a
target process at time t = 0 and then calculates how each of the remaining processes in the latent
VAR are expected to respond over the forecast horizon h. The function computes IRFs for all
processes in the object and returns them in an array that can be plotted using the S3 plot function

36 lfo_cv.mvgam

Value

An object of class mvgam_irf containing the posterior IRFs. This object can be used with the
supplied S3 functions plot

Author(s)

Nicholas J Clark

See Also

VAR, plot.mvgam_irf

Examples

Simulate some time series that follow a latent VAR(1) process
simdat <- sim_mvgam(family = gaussian(),

n_series = 4,
trend_model = VAR(cor = TRUE),
prop_trend = 1)

plot_mvgam_series(data = simdat$data_train, series = 'all')

Fit a model that uses a latent VAR(1)
mod <- mvgam(y ~ -1,

trend_formula = ~ 1,
trend_model = VAR(cor = TRUE),
family = gaussian(),
data = simdat$data_train,
silent = 2)

Calulate Generalized IRFs for each series
irfs <- irf(mod, h = 12, cumulative = FALSE)

Plot them
plot(irfs, series = 1)
plot(irfs, series = 2)
plot(irfs, series = 3)

lfo_cv.mvgam Approximate leave-future-out cross-validation of fitted mvgam objects

Description

Approximate leave-future-out cross-validation of fitted mvgam objects

lfo_cv.mvgam 37

Usage

lfo_cv(object, ...)

S3 method for class 'mvgam'
lfo_cv(
object,
data,
min_t,
fc_horizon = 1,
pareto_k_threshold = 0.7,
silent = 1,
...

)

Arguments

object list object returned from mvgam. See mvgam()

... Ignored

data A dataframe or list containing the model response variable and covariates
required by the GAM formula. Should include columns: ’series’ (character
or factor index of the series IDs) ’time’ (numeric index of the time point for
each observation). Any other variables to be included in the linear predictor of
formula must also be present

min_t Integer specifying the minimum training time required before making predic-
tions from the data. Default is either 30, or whatever training time allows for at
least 10 lfo-cv calculations (i.e. pmin(max(data$time) - 10, 30)). This value
is essentially arbitrary so it is highly recommended to change it to something
that is more suitable to the data and models being evaluated

fc_horizon Integer specifying the number of time steps ahead for evaluating forecasts
pareto_k_threshold

Proportion specifying the threshold over which the Pareto shape parameter is
considered unstable, triggering a model refit. Default is 0.7

silent Verbosity level between 0 and 2. If 1 (the default), most of the informational
messages of compiler and sampler are suppressed. If 2, even more messages
are suppressed. The actual sampling progress is still printed. Set refresh = 0 to
turn this off as well. If using backend = "rstan" you can also set open_progress
= FALSE to prevent opening additional progress bars.

Details

Approximate leave-future-out cross-validation uses an expanding training window scheme to eval-
uate a model on its forecasting ability. The steps used in this function mirror those laid out in the lfo
vignette from the loo package, written by Paul Bürkner, Jonah Gabry, Aki Vehtari. First, we refit
the model using the first min_t observations to perform a single exact fc_horizon-ahead forecast
step. This forecast is evaluated against the min_t + fc_horizon out of sample observations using
the Expected Log Predictive Density (ELPD). Next, we approximate each successive round of ex-
panding window forecasts by moving forward one step at a time for i in 1:N_evaluations and

https://mc-stan.org/loo/articles/loo2-lfo.html
https://mc-stan.org/loo/articles/loo2-lfo.html

38 lfo_cv.mvgam

re-weighting draws from the model’s posterior predictive distribution using Pareto Smoothed Im-
portance Sampling (PSIS). In each iteration i, PSIS weights are obtained for the next observation
that would have been included in the model if we had re-fit (i.e. the last observation that would
have been in the training data, or min_t + i). If these importance ratios are stable, we consider the
approximation adequate and use the re-weighted posterior’s forecast for evaluating the next holdout
set of testing observations ((min_t + i + 1):(min_t + i + fc_horizon)). At some point the im-
portance ratio variability will become too large and importance sampling will fail. This is indicated
by the estimated shape parameter k of the generalized Pareto distribution crossing a certain thresh-
old pareto_k_threshold. Only then do we refit the model using all of the observations up to the
time of the failure. We then restart the process and iterate forward until the next refit is triggered
(Bürkner et al. 2020).

Value

A list of class mvgam_lfo containing the approximate ELPD scores, the Pareto-k shape values
and ’the specified pareto_k_threshold

Author(s)

Nicholas J Clark

References

Paul-Christian Bürkner, Jonah Gabry & Aki Vehtari (2020). Approximate leave-future-out cross-
validation for Bayesian time series models Journal of Statistical Computation and Simulation.
90:14, 2499-2523.

See Also

forecast, score, compare_mvgams

Examples

Not run:
Simulate from a Poisson-AR2 model with a seasonal smooth
set.seed(100)
dat <- sim_mvgam(T = 75,

n_series = 1,
prop_trend = 0.75,
trend_model = 'AR2',
family = poisson())

Plot the time series
plot_mvgam_series(data = dat$data_train,

newdata = dat$data_test,
series = 1)

Fit an appropriate model
mod_ar2 <- mvgam(y ~ s(season, bs = 'cc', k = 6),

trend_model = AR(p = 2),
family = poisson(),

logLik.mvgam 39

data = dat$data_train,
newdata = dat$data_test,
burnin = 300,
samples = 300,
chains = 2)

Fit a less appropriate model
mod_rw <- mvgam(y ~ s(season, bs = 'cc', k = 6),

trend_model = RW(),
family = poisson(),
data = dat$data_train,
newdata = dat$data_test,
burnin = 300,
samples = 300,
chains = 2)

Compare Discrete Ranked Probability Scores for the testing period
fc_ar2 <- forecast(mod_ar2)
fc_rw <- forecast(mod_rw)
score_ar2 <- score(fc_ar2, score = 'drps')
score_rw <- score(fc_rw, score = 'drps')
sum(score_ar2$series_1$score)
sum(score_rw$series_1$score)

Now use approximate leave-future-out CV to compare
rolling forecasts; start at time point 40 to reduce
computational time and to ensure enough data is available
for estimating model parameters
lfo_ar2 <- lfo_cv(mod_ar2,

min_t = 40,
fc_horizon = 3)

lfo_rw <- lfo_cv(mod_rw,
min_t = 40,
fc_horizon = 3)

Plot Pareto-K values and ELPD estimates
plot(lfo_ar2)
plot(lfo_rw)

Proportion of timepoints in which AR2 model gives better forecasts
length(which((lfo_ar2$elpds - lfo_rw$elpds) > 0)) /

length(lfo_ar2$elpds)

A higher total ELPD is preferred
lfo_ar2$sum_ELPD
lfo_rw$sum_ELPD

End(Not run)

logLik.mvgam Compute pointwise Log-Likelihoods from fitted mvgam objects

40 logLik.mvgam

Description

Compute pointwise Log-Likelihoods from fitted mvgam objects

Usage

S3 method for class 'mvgam'
logLik(object, linpreds, newdata, family_pars, include_forecast = TRUE, ...)

Arguments

object list object returned from mvgam

linpreds Optional matrix of linear predictor draws to use for calculating pointwise log-
likelihoods

newdata Optional data.frame or list object specifying which series each column in
linpreds belongs to. If linpreds is supplied, then newdata must also be sup-
plied

family_pars Optional list containing posterior draws of family-specific parameters (i.e.
shape, scale or overdispersion parameters). Required if linpreds and newdata
are supplied

include_forecast

Logical. If newdata were fed to the model to compute forecasts, should the
log-likelihood draws for these observations also be returned. Defaults to TRUE

... Ignored

Value

A matrix of dimension n_samples x n_observations containing the pointwise log-likelihood
draws for all observations in newdata. If no newdata is supplied, log-likelihood draws are returned
for all observations that were originally fed to the model (training observations and, if supplied to
the original model via the newdata argument in mvgam, testing observations)

Examples

Not run:
Simulate some data and fit a model
simdat <- sim_mvgam(n_series = 1, trend_model = 'AR1')
mod <- mvgam(y ~ s(season, bs = 'cc', k = 6),

trend_model = AR(),
data = simdat$data_train,
burnin = 300,
samples = 300,
chains = 2)

Extract logLikelihood values
lls <- logLik(mod)
str(lls)

End(Not run)

loo.mvgam 41

loo.mvgam LOO information criteria for mvgam models

Description

Extract the LOOIC (leave-one-out information criterion) using loo::loo()

Usage

S3 method for class 'mvgam'
loo(x, incl_dynamics = TRUE, ...)

S3 method for class 'mvgam'
loo_compare(x, ..., model_names = NULL, incl_dynamics = TRUE)

Arguments

x Object of class mvgam

incl_dynamics Logical; indicates if any latent dynamic structures that were included in the
model should be considered when calculating in-sample log-likelihoods. De-
faults to TRUE

... More mvgam objects.

model_names If NULL (the default) will use model names derived from deparsing the call. Oth-
erwise will use the passed values as model names.

Details

When comparing two (or more) fitted mvgam models, we can estimate the difference in their in-
sample predictive accuracies using the Expcted Log Predictive Density (ELPD). This metric can
be approximated using Pareto Smoothed Importance Sampling, which is a method to re-weight
posterior draws to approximate what predictions the models might have made for a given datapoint
had that datapoint not been included in the original model fit (i.e. if we were to run a leave-
one-out cross-validation and then made a prediction for the held-out datapoint). See details from
loo::loo() and loo::loo_compare() for further information on how this importance sampling
works.

There are two fundamentally different ways to calculate ELPD from mvgam models that included
dynamic latent processes (i.e. "trend_models"). The first is to use the predictions that were gener-
ated when estimating these latent processes by setting incl_dynamics = TRUE. This works in the
same way that setting incl_autocor = TRUE in brms::prepare_predictions(). But it may also
be desirable to compare predictions by considering that the dynamic processes are nuisance param-
eters that we’d wish to account for when making inferences about other processes in the model (i.e.
the linear predictor effects). Setting incl_dynamics = FALSE will accomplish this by ignoring the
dynamic processes when making predictions. This option matches up with what mvgam’s predic-
tion functions return (i.e. predict.mvgam, ppc, pp_check.mvgam, posterior_epred.mvgam) and
will be far less forgiving of models that may be overfitting the training data due to highly flexi-
ble dynamic processes (such as Random Walks, for example). However setting incl_dynamics =

42 loo.mvgam

FALSE will often result in less stable Pareto k diagnostics for models with dynamic trends, mak-
ing ELPD comparisons difficult and unstable. It is therefore recommended to generally stick
with incl_dynamics = TRUE when comparing models based on in-sample fits, and then to per-
haps use forecast evaluations for further scrutiny of models (see for example forecast.mvgam,
score.mvgam_forecast and lfo_cv)

Value

for loo.mvgam, an object of class psis_loo (see loo::loo() for details). For loo_compare.mvgam,
an object of class compare.loo (loo::loo_compare() for details)

Examples

Simulate 4 time series with hierarchical seasonality
and independent AR1 dynamic processes
set.seed(111)
simdat <- sim_mvgam(seasonality = 'hierarchical',

trend_model = AR(),
family = gaussian())

Fit a model with shared seasonality
mod1 <- mvgam(y ~ s(season, bs = 'cc', k = 6),

data = rbind(simdat$data_train,
simdat$data_test),
family = gaussian(),
chains = 2)

Inspect the model and calculate LOO
conditional_effects(mod1)
mc.cores.def <- getOption('mc.cores')
options(mc.cores = 1)
loo(mod1)

Now fit a model with hierarchical seasonality
mod2 <- update(mod1,

formula = y ~ s(season, bs = 'cc', k = 6) +
s(season, series, bs = 'fs',
xt = list(bs = 'cc'), k = 4),
chains = 2)

conditional_effects(mod2)
loo(mod2)

Now add AR1 dynamic errors to mod2
mod3 <- update(mod2,

trend_model = AR(),
chains = 2)

conditional_effects(mod3)
plot(mod3, type = 'trend')
loo(mod3)

Compare models using LOO
loo_compare(mod1, mod2, mod3)

lv_correlations 43

options(mc.cores = mc.cores.def)

Compare forecast abilities using an expanding training window and
forecasting ahead 1 timepoint from each window; the first window by includes
the first 92 timepoints (of the 100 that were simulated)
max(mod2obs_datatime)
lfo_mod2 <- lfo_cv(mod2, min_t = 92)
lfo_mod3 <- lfo_cv(mod3, min_t = 92)

Take the difference in forecast ELPDs; a model with higher ELPD is preferred,
so negative values here indicate that mod3 gave better forecasts for a particular
out of sample timepoint
plot(y = lfo_mod2$elpds - lfo_mod3$elpds,

x = lfo_mod2$eval_timepoints, pch = 16,
ylab = 'ELPD_mod2 - ELPD_mod3',
xlab = 'Evaluation timepoint')

abline(h = 0, lty = 'dashed')

lv_correlations Calculate trend correlations based on mvgam latent factor loadings

Description

This function uses samples of latent trends for each series from a fitted mvgam model to calculates
correlations among series’ trends

Usage

lv_correlations(object)

Arguments

object list object returned from mvgam

Value

A list object containing the mean posterior correlations and the full array of posterior correlations

Examples

Not run:
simdat <- sim_mvgam()
mod <- mvgam(y ~ s(season, bs = 'cc',

k = 6),
trend_model = AR(),
use_lv = TRUE,
n_lv = 2,
data = simdat$data_train,
burnin = 300,

44 mcmc_plot.mvgam

samples = 300,
chains = 2)

lvcors <- lv_correlations(mod)
names(lvcors)
lapply(lvcors, class)

End(Not run)

mcmc_plot.mvgam MCMC plots as implemented in bayesplot

Description

Convenient way to call MCMC plotting functions implemented in the bayesplot package

Usage

S3 method for class 'mvgam'
mcmc_plot(
object,
type = "intervals",
variable = NULL,
regex = FALSE,
use_alias = TRUE,
...

)

Arguments

object An R object typically of class brmsfit

type The type of the plot. Supported types are (as names) hist, dens, hist_by_chain,
dens_overlay, violin, intervals, areas, areas_ridges, combo, acf, acf_bar,
trace, trace_highlight, scatter, hex, pairs, violin, rhat, rhat_hist,
neff, neff_hist and nuts_energy. For an overview on the various plot types
see MCMC-overview.

variable Names of the variables (parameters) to plot, as given by a character vector or
a regular expression (if regex = TRUE). By default, a hopefully not too large
selection of variables is plotted.

regex Logical; Indicates whether variable should be treated as regular expressions.
Defaults to FALSE.

use_alias Logical. If more informative names for parameters are available (i.e. for beta co-
efficients b or for smoothing parameters rho), replace the uninformative names
with the more informative alias. Defaults to TRUE

... Additional arguments passed to the plotting functions. See MCMC-overview for
more details.

model.frame.mvgam 45

Value

A ggplot object that can be further customized using the ggplot2 package.

See Also

mvgam_draws for an overview of some of the shortcut strings that can be used for argument variable

Examples

Not run:
simdat <- sim_mvgam(n_series = 1, trend_model = AR())
mod <- mvgam(y ~ s(season, bs = 'cc', k = 6),

trend_model = AR(),
noncentred = TRUE,
data = simdat$data_train,
chains = 2)

mcmc_plot(mod)
mcmc_plot(mod, type = 'neff_hist')
mcmc_plot(mod, variable = 'betas', type = 'areas')
mcmc_plot(mod, variable = 'trend_params', type = 'combo')

End(Not run)

model.frame.mvgam Extract model.frame from a fitted mvgam object

Description

Extract model.frame from a fitted mvgam object

Usage

S3 method for class 'mvgam'
model.frame(formula, trend_effects = FALSE, ...)

S3 method for class 'mvgam_prefit'
model.frame(formula, trend_effects = FALSE, ...)

Arguments

formula a model formula or terms object or an R object.

trend_effects logical, return the model.frame from the observation model (if FALSE) or from
the underlying process model (ifTRUE)

... Ignored

Value

A matrix containing the fitted model frame

46 monotonic

Author(s)

Nicholas J Clark

monotonic Monotonic splines in mvgam

Description

Uses constructors from package splines2 to build monotonically increasing or decreasing splines.
Details also in Wang & Yan (2021).

Usage

S3 method for class 'moi.smooth.spec'
smooth.construct(object, data, knots)

S3 method for class 'mod.smooth.spec'
smooth.construct(object, data, knots)

S3 method for class 'moi.smooth'
Predict.matrix(object, data)

S3 method for class 'mod.smooth'
Predict.matrix(object, data)

Arguments

object A smooth specification object, usually generated by a term s(x, bs = "moi",
...) or s(x, bs = "mod", ...)

data a list containing just the data (including any by variable) required by this term,
with names corresponding to object$term (and object$by). The by variable
is the last element.

knots a list containing any knots supplied for basis setup — in same order and with
same names as data. Can be NULL. See details for further information.

Details

The constructor is not normally called directly, but is rather used internally by mvgam. If they are
not supplied then the knots of the spline are placed evenly throughout the covariate values to which
the term refers: For example, if fitting 101 data with an 11 knot spline of x then there would be a
knot at every 10th (ordered) x value. The spline is an implementation of the closed-form I-spline
basis based on the recursion formula given by Ramsay (1988), in which the basis coefficients must
be constrained to either be non-negative (for monotonically increasing functions) or non-positive
(monotonically decreasing)

Take note that when using either monotonic basis, the number of basis functions k must be sup-
plied as an even integer due to the manner in which monotonic basis functions are constructed

monotonic 47

Value

An object of class "moi.smooth" or "mod.smooth". In addition to the usual elements of a smooth
class documented under smooth.construct, this object will contain a slot called boundary that
defines the endpoints beyond which the spline will begin extrapolating (extrapolation is flat due to
the first order penalty placed on the smooth function)

Note

This constructor will result in a valid smooth if using a call to gam or bam, however the resulting
functions will not be guaranteed to be monotonic because constraints on basis coefficients will not
be enforced

Author(s)

Nicholas J Clark

References

Wang, Wenjie, and Jun Yan. "Shape-Restricted Regression Splines with R Package splines2." Jour-
nal of Data Science 19.3 (2021).

Ramsay, J. O. (1988). Monotone regression splines in action. Statistical Science, 3(4), 425–441.

Examples

Simulate data from a monotonically increasing function
set.seed(123123)
x <- runif(80) * 4 - 1
x <- sort(x)
f <- exp(4 * x) / (1 + exp(4 * x))
y <- f + rnorm(80) * 0.1
plot(x, y)

A standard TRPS smooth doesn't capture monotonicity
library(mgcv)
mod_data <- data.frame(y = y, x = x)
mod <- gam(y ~ s(x, k = 16),

data = mod_data,
family = gaussian())

library(marginaleffects)
plot_predictions(mod,

by = 'x',
newdata = data.frame(x = seq(min(x) - 0.5,

max(x) + 0.5,
length.out = 100)),

points = 0.5)

Using the 'moi' basis in mvgam rectifies this
mod_data$time <- 1:NROW(mod_data)
mod2 <- mvgam(y ~ s(x, bs = 'moi', k = 18),

48 monotonic

data = mod_data,
family = gaussian(),
chains = 2)

plot_predictions(mod2,
by = 'x',
newdata = data.frame(x = seq(min(x) - 0.5,

max(x) + 0.5,
length.out = 100)),

points = 0.5)

plot(mod2, type = 'smooth', realisations = TRUE)

'by' terms that produce a different smooth for each level of the 'by'
factor are also allowed
set.seed(123123)
x <- runif(80) * 4 - 1
x <- sort(x)

Two different monotonic smooths, one for each factor level
f <- exp(4 * x) / (1 + exp(4 * x))
f2 <- exp(3.5 * x) / (1 + exp(3 * x))
fac <- c(rep('a', 80), rep('b', 80))
y <- c(f + rnorm(80) * 0.1,

f2 + rnorm(80) * 0.2)
plot(x, y[1:80])
plot(x, y[81:160])

Gather all data into a data.frame, including the factor 'by' variable
mod_data <- data.frame(y, x, fac = as.factor(fac))
mod_data$time <- 1:NROW(mod_data)

Fit a model with different smooths per factor level
mod <- mvgam(y ~ s(x, bs = 'moi', by = fac, k = 8),

data = mod_data,
family = gaussian(),
chains = 2)

Visualise the different monotonic functions
plot_predictions(mod, condition = c('x', 'fac', 'fac'),

points = 0.5)
plot(mod, type = 'smooth', realisations = TRUE)

First derivatives (on the link scale) should never be
negative for either factor level
(derivs <- slopes(mod, variables = 'x',

by = c('x', 'fac'),
type = 'link'))

all(derivs$estimate > 0)

mvgam 49

mvgam Fit a Bayesian dynamic GAM to a univariate or multivariate set of
time series

Description

This function estimates the posterior distribution for Generalised Additive Models (GAMs) that can
include smooth spline functions, specified in the GAM formula, as well as latent temporal pro-
cesses, specified by trend_model. Further modelling options include State-Space representations
to allow covariates and dynamic processes to occur on the latent ’State’ level while also capturing
observation-level effects. Prior specifications are flexible and explicitly encourage users to apply
prior distributions that actually reflect their beliefs. In addition, model fits can easily be assessed
and compared with posterior predictive checks, forecast comparisons and leave-one-out / leave-
future-out cross-validation.

Usage

mvgam(
formula,
trend_formula,
knots,
trend_knots,
data,
data_train,
newdata,
data_test,
run_model = TRUE,
prior_simulation = FALSE,
return_model_data = FALSE,
family = "poisson",
share_obs_params = FALSE,
use_lv = FALSE,
n_lv,
trend_map,
trend_model = "None",
drift = FALSE,
noncentred = FALSE,
chains = 4,
burnin = 500,
samples = 500,
thin = 1,
parallel = TRUE,
threads = 1,
priors,
refit = FALSE,
lfo = FALSE,
residuals = TRUE,

50 mvgam

use_stan = TRUE,
backend = getOption("brms.backend", "cmdstanr"),
algorithm = getOption("brms.algorithm", "sampling"),
autoformat = TRUE,
save_all_pars = FALSE,
max_treedepth = 12,
adapt_delta = 0.85,
silent = 1,
jags_path,
...

)

Arguments

formula A character string specifying the GAM observation model formula. These are
exactly like the formula for a GLM except that smooth terms, s(), te(), ti(),
t2(), as well as time-varying dynamic() terms, can be added to the right hand
side to specify that the linear predictor depends on smooth functions of pre-
dictors (or linear functionals of these). In nmix() family models, the formula
is used to set up a linear predictor for the detection probability. Details of the
formula syntax used by mvgam can be found in mvgam_formulae

trend_formula An optional character string specifying the GAM process model formula. If
supplied, a linear predictor will be modelled for the latent trends to capture pro-
cess model evolution separately from the observation model. Should not have
a response variable specified on the left-hand side of the formula (i.e. a valid
option would be ~ season + s(year)). Also note that you should not use the
identifier series in this formula to specify effects that vary across time se-
ries. Instead you should use trend. This will ensure that models in which a
trend_map is supplied will still work consistently (i.e. by allowing effects to
vary across process models, even when some time series share the same under-
lying process model). This feature is only currently available for RW(), AR()
and VAR() trend models. In nmix() family models, the trend_formula is used
to set up a linear predictor for the underlying latent abundance. Be aware that
it can be very challenging to simultaneously estimate intercept parameters for
both the observation mode (captured by formula) and the process model (cap-
tured by trend_formula). Users are recommended to drop one of these using
the - 1 convention in the formula right hand side.

knots An optional list containing user specified knot values to be used for basis con-
struction. For most bases the user simply supplies the knots to be used, which
must match up with the k value supplied (note that the number of knots is not
always just k). Different terms can use different numbers of knots, unless they
share a covariate

trend_knots As for knots above, this is an optional list of knot values for smooth functions
within the trend_formula

data A dataframe or list containing the model response variable and covariates
required by the GAM formula and optional trend_formula. Should include
columns: #’

mvgam 51

• series (a factor index of the series IDs; the number of levels should be
identical to the number of unique series labels (i.e. n_series = length(levels(data$series))))

• time (numeric or integer index of the time point for each observation).
For most dynamic trend types available in mvgam (see argument trend_model),
time should be measured in discrete, regularly spaced intervals (i.e. c(1,
2, 3, ...)). However you can use irregularly spaced intervals if using
trend_model = CAR(1), though note that any temporal intervals that are
exactly 0 will be adjusted to a very small number (1e-12) to prevent sam-
pling errors. See an example of CAR() trends in CAR

Should also include any other variables to be included in the linear predictor of
formula

data_train Deprecated. Still works in place of data but users are recommended to use data
instead for more seamless integration into R workflows

newdata Optional dataframe or list of test data containing at least series and time
in addition to any other variables included in the linear predictor of formula. If
included, the observations in variable y will be set to NA when fitting the model
so that posterior simulations can be obtained

data_test Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

run_model logical. If FALSE, the model is not fitted but instead the function will return
the model file and the data / initial values that are needed to fit the model outside
of mvgam

prior_simulation

logical. If TRUE, no observations are fed to the model, and instead simulations
from prior distributions are returned

return_model_data

logical. If TRUE, the list of data that is needed to fit the model is returned,
along with the initial values for smooth and AR parameters, once the model is
fitted. This will be helpful if users wish to modify the model file to add other
stochastic elements that are not currently available in mvgam. Default is FALSE
to reduce the size of the returned object, unless run_model == FALSE

family family specifying the exponential observation family for the series. Currently
supported families are:

• gaussian() for real-valued data
• betar() for proportional data on (0,1)

• lognormal() for non-negative real-valued data
• student_t() for real-valued data
• Gamma() for non-negative real-valued data
• bernoulli() for binary data
• poisson() for count data
• nb() for overdispersed count data
• binomial() for count data with imperfect detection when the number of

trials is known; note that the cbind() function must be used to bind the
discrete observations and the discrete number of trials

• beta_binomial() as for binomial() but allows for overdispersion

52 mvgam

• nmix() for count data with imperfect detection when the number of trials
is unknown and should be modeled via a State-Space N-Mixture model.
The latent states are Poisson, capturing the ’true’ latent abundance, while
the observation process is Binomial to account for imperfect detection. See
mvgam_families for an example of how to use this family

Note that only nb() and poisson() are available if using JAGS as the backend.
Default is poisson(). See mvgam_families for more details

share_obs_params

logical. If TRUE and the family has additional family-specific observation
parameters (e.g. variance components in student_t() or gaussian(), or dis-
persion parameters in nb() or betar()), these parameters will be shared across
all series. This is handy if you have multiple time series that you believe share
some properties, such as being from the same species over different spatial units.
Default is FALSE.

use_lv logical. If TRUE, use dynamic factors to estimate series’ latent trends in a re-
duced dimension format. Only available for RW(), AR() and GP() trend models.
Defaults to FALSE

n_lv integer the number of latent dynamic factors to use if use_lv == TRUE. Cannot
be > n_series. Defaults arbitrarily to min(2, floor(n_series / 2))

trend_map Optional data.frame specifying which series should depend on which latent
trends. Useful for allowing multiple series to depend on the same latent trend
process, but with different observation processes. If supplied, a latent factor
model is set up by setting use_lv = TRUE and using the mapping to set up the
shared trends. Needs to have column names series and trend, with integer
values in the trend column to state which trend each series should depend on.
The series column should have a single unique entry for each series in the data
(names should perfectly match factor levels of the series variable in data).
Note that if this is supplied, the intercept parameter in the process model will
NOT be automatically suppressed. See examples for details

trend_model character or function specifying the time series dynamics for the latent trend.
Options are:

• None (no latent trend component; i.e. the GAM component is all that
contributes to the linear predictor, and the observation process is the only
source of error; similarly to what is estimated by gam)

• 'RW' or RW()
• 'AR1' or AR(p = 1)

• 'AR2' or AR(p = 2)

• 'AR3' or AR(p = 3)

• 'CAR1' or CAR(p = 1)

• 'VAR1' or VAR()(only available in Stan)
• 'PWlogistic, 'PWlinear' or PW() (only available in Stan)
• 'GP' or GP() (Gaussian Process with squared exponential kernel; only

available in Stan)

For all trend types apart from GP(), CAR() and PW(), moving average and/or cor-
related process error terms can also be estimated (for example, RW(cor = TRUE)

mvgam 53

will set up a multivariate Random Walk if n_series > 1). See mvgam_trends
for more details

drift Deprecated. If you wish to estimate drift parameters, include parametric fixed
effects of ’time’ in your formulae instead.

noncentred logical Use the non-centred parameterisation for autoregressive trend mod-
els? Setting to TRUE will reparameterise the model to avoid possible degen-
eracies that can show up when estimating the latent dynamic random effects.
For some models, this can produce big gains in efficiency, meaning that fewer
burnin and sampling iterations are required for posterior exploration. But for
other models, where the data are highly informative about the latent dynamic
processes, this can actually lead to worse performance. Only available for cer-
tain trend models (i.e. RW(), AR(), or CAR(), or for trend = 'None' when using
a trend_formula). Not yet available for moving average or correlated error
models

chains integer specifying the number of parallel chains for the model. Ignored if
algorithm %in% c('meanfield', 'fullrank', 'pathfinder', 'laplace')

burnin integer specifying the number of warmup iterations of the Markov chain to
run to tune sampling algorithms. Ignored if algorithm %in% c('meanfield',
'fullrank', 'pathfinder', 'laplace')

samples integer specifying the number of post-warmup iterations of the Markov chain
to run for sampling the posterior distribution

thin Thinning interval for monitors. Ignored if algorithm %in% c('meanfield',
'fullrank', 'pathfinder', 'laplace')

parallel logical specifying whether multiple cores should be used for generating MCMC
simulations in parallel. If TRUE, the number of cores to use will be min(c(chains,
parallel::detectCores() - 1))

threads integer Experimental option to use multithreading for within-chain paralleli-
sation in Stan. We recommend its use only if you are experienced with Stan’s
reduce_sum function and have a slow running model that cannot be sped up by
any other means. Only available for some families(poisson(), nb(), gaussian())
and when using Cmdstan as the backend

priors An optional data.frame with prior definitions (in JAGS or Stan syntax). if
using Stan, this can also be an object of class brmsprior (see. prior for details).
See get_mvgam_priors and ’Details’ for more information on changing default
prior distributions

refit Logical indicating whether this is a refit, called using update.mvgam. Users
should leave as FALSE

lfo Logical indicating whether this is part of a call to lfo_cv.mvgam. Returns a
lighter version of the model with no residuals and fewer monitored parameters
to speed up post-processing. But other downstream functions will not work
properly, so users should always leave this set as FALSE

residuals Logical indicating whether to compute series-level randomized quantile residu-
als and include them as part of the returned object. Defaults to TRUE, but you can
set to FALSE to save computational time and reduce the size of the returned object
(users can always add residuals to an object of class mvgam using add_residuals)

54 mvgam

use_stan Logical. If TRUE, the model will be compiled and sampled using Hamiltonian
Monte Carlo with a call to cmdstan_model or a call to stan. Note that there are
many more options when using Stan vs JAGS

backend Character string naming the package to use as the backend for fitting the Stan
model (if use_stan = TRUE). Options are "cmdstanr" (the default) or "rstan".
Can be set globally for the current R session via the "brms.backend" option
(see options). Details on the rstan and cmdstanr packages are available at
https://mc-stan.org/rstan/ and https://mc-stan.org/cmdstanr/, respectively

algorithm Character string naming the estimation approach to use. Options are "sampling"
for MCMC (the default), "meanfield" for variational inference with factorized
normal distributions, "fullrank" for variational inference with a multivariate
normal distribution, "laplace" for a Laplace approximation (only available
when using cmdstanr as the backend) or "pathfinder" for the pathfinder al-
gorithm (only currently available when using cmdstanr as the backend). Can
be set globally for the current R session via the "brms.algorithm" option (see
options). Limited testing suggests that "meanfield" performs best out of the
non-MCMC approximations for dynamic GAMs, possibly because of the dif-
ficulties estimating covariances among the many spline parameters and latent
trend parameters. But rigorous testing has not been carried out

autoformat Logical. Use the stanc parser to automatically format the Stan code and check
for deprecations. Only for development purposes, so leave to TRUE

save_all_pars Logical flag to indicate if draws from all variables defined in Stan’s parameters
block should be saved (default is FALSE).

max_treedepth positive integer placing a cap on the number of simulation steps evaluated during
each iteration when use_stan == TRUE. Default is 12. Increasing this value can
sometimes help with exploration of complex posterior geometries, but it is rarely
fruitful to go above a max_treedepth of 14

adapt_delta positive numeric between 0 and 1 defining the target average proposal accep-
tance probability during Stan’s adaptation period, if use_stan == TRUE. Default
is 0.8. In general you should not need to change adapt_delta unless you see
a warning message about divergent transitions, in which case you can increase
adapt_delta from the default to a value closer to 1 (e.g. from 0.95 to 0.99,
or from 0.99 to 0.999, etc). The step size used by the numerical integrator is a
function of adapt_delta in that increasing adapt_delta will result in a smaller
step size and fewer divergences. Increasing adapt_delta will typically result
in a slower sampler, but it will always lead to a more robust sampler

silent Verbosity level between 0 and 2. If 1 (the default), most of the informational
messages of compiler and sampler are suppressed. If 2, even more messages
are suppressed. The actual sampling progress is still printed. Set refresh = 0 to
turn this off as well. If using backend = "rstan" you can also set open_progress
= FALSE to prevent opening additional progress bars.

jags_path Optional character vector specifying the path to the location of the JAGS exe-
cutable (.exe) to use for modelling if use_stan == FALSE. If missing, the path
will be recovered from a call to findjags

... Further arguments passed to Stan. For backend = "rstan" the arguments are
passed to sampling or vb. For backend = "cmdstanr" the arguments are passed

mvgam 55

to the cmdstanr::sample, cmdstanr::variational, cmdstanr::laplace or
cmdstanr::pathfinder method

Details

Dynamic GAMs are useful when we wish to predict future values from time series that show tem-
poral dependence but we do not want to rely on extrapolating from a smooth term (which can
sometimes lead to unpredictable and unrealistic behaviours). In addition, smooths can often try to
wiggle excessively to capture any autocorrelation that is present in a time series, which exacerbates
the problem of forecasting ahead. As GAMs are very naturally viewed through a Bayesian lens, and
we often must model time series that show complex distributional features and missing data, param-
eters for mvgam models are estimated in a Bayesian framework using Markov Chain Monte Carlo by
default. A general overview is provided in the primary vignettes: vignette("mvgam_overview")
and vignette("data_in_mvgam"). For a full list of available vignettes see vignette(package =
"mvgam")

Formula syntax: Details of the formula syntax used by mvgam can be found in mvgam_formulae.
Note that it is possible to supply an empty formula where there are no predictors or intercepts in
the observation model (i.e. y ~ 0 or y ~ -1). In this case, an intercept-only observation model will
be set up but the intercept coefficient will be fixed at zero. This can be handy if you wish to fit
pure State-Space models where the variation in the dynamic trend controls the average expectation,
and/or where intercepts are non-identifiable (as in piecewise trends, see examples below)

Families and link functions: Details of families supported by mvgam can be found in mvgam_families.

Trend models: Details of latent trend dynamic models supported by mvgam can be found in
mvgam_trends.

Priors: Default priors for intercepts and any scale parameters are generated using the same prac-
tice as brms. Prior distributions for most important model parameters can be altered by the user
to inspect model sensitivities to given priors (see get_mvgam_priors for details). Note that latent
trends are estimated on the link scale so choose priors accordingly. However more control over the
model specification can be accomplished by first using mvgam as a baseline, then editing the returned
model accordingly. The model file can be edited and run outside of mvgam by setting run_model =
FALSE and this is encouraged for complex modelling tasks. Note, no priors are formally checked to
ensure they are in the right syntax for the respective probabilistic modelling framework, so it is up
to the user to ensure these are correct (i.e. use dnorm for normal densities in JAGS, with the mean
and precision parameterisation; but use normal for normal densities in Stan, with the mean and
standard deviation parameterisation)

Random effects: For any smooth terms using the random effect basis (smooth.construct.re.smooth.spec),
a non-centred parameterisation is automatically employed to avoid degeneracies that are common
in hierarchical models. Note however that centred versions may perform better for series that are
particularly informative, so as with any foray into Bayesian modelling, it is worth building an under-
standing of the model’s assumptions and limitations by following a principled workflow. Also note
that models are parameterised using drop.unused.levels = FALSE in jagam to ensure predictions
can be made for all levels of the supplied factor variable

Observation level parameters: When more than one series is included in data and an observa-

56 mvgam

tion family that contains more than one parameter is used, additional observation family parameters
(i.e. phi for nb() or sigma for gaussian()) are by default estimated independently for each series.
But if you wish for the series to share the same observation parameters, set share_obs_params =
TRUE

Factor regularisation: When using a dynamic factor model for the trends with JAGS factor pre-
cisions are given regularized penalty priors to theoretically allow some factors to be dropped from
the model by squeezing increasing factors’ variances to zero. This is done to help protect against
selecting too many latent factors than are needed to capture dependencies in the data, so it can often
be advantageous to set n_lv to a slightly larger number. However larger numbers of factors do
come with additional computational costs so these should be balanced as well. When using Stan,
all factors are parameterised with fixed variance parameters

Residuals: For each series, randomized quantile (i.e. Dunn-Smyth) residuals are calculated for
inspecting model diagnostics If the fitted model is appropriate then Dunn-Smyth residuals will be
standard normal in distribution and no autocorrelation will be evident. When a particular obser-
vation is missing, the residual is calculated by comparing independent draws from the model’s
posterior distribution

Using Stan: mvgam is primarily designed to use Hamiltonian Monte Carlo for parameter estimation
via the software Stan (using either the cmdstanr or rstan interface). There are great advantages
when using Stan over Gibbs / Metropolis Hastings samplers, which includes the option to estimate
nonlinear effects via Hilbert space approximate Gaussian Processes, the availability of a variety of
inference algorithms (i.e. variational inference, laplacian inference etc...) and capabilities to en-
force stationarity for complex Vector Autoregressions. Because of the many advantages of Stan
over JAGS, further development of the package will only be applied to Stan. This includes the
planned addition of more response distributions, plans to handle zero-inflation, and plans to incor-
porate a greater variety of trend models. Users are strongly encouraged to opt for Stan over JAGS
in any proceeding workflows

How to start?: The mvgam cheatsheet is a good starting place if you are just learning to use the
package. It gives an overview of the package’s key functions and objects, as well as providing a
reasonable workflow that new users can follow. In general it is recommended to

• 1. Check that your time series data are in a suitable long format for mvgam modeling (see the
data formatting vignette for guidance)

• 2. Inspect features of the data using plot_mvgam_series. Now is also a good time to fa-
miliarise yourself with the package’s example workflows that are detailed in the vignettes.
In particular, the getting started vignette, the shared latent states vignette, the time-varying
effects vignette and the State-Space models vignette all provide detailed information about
how to structure, fit and interrogate Dynamic Generalized Additive Models in mvgam. Some
more specialized how-to articles include "Incorporating time-varying seasonality in forecast
models" and "Temporal autocorrelation in GAMs and the mvgam package"

• 3. Carefully think about how to structure linear predictor effects (i.e. smooth terms using s,
te or ti, GPs using gp, dynamic time-varying effects using dynamic, and parametric terms),
latent temporal trend components (see mvgam_trends) and the appropriate observation family
(see mvgam_families). Use get_mvgam_priors to see default prior distributions for stochas-
tic parameters

https://arxiv.org/abs/2004.11408
https://www.tandfonline.com/doi/full/10.1080/10618600.2022.2079648
https://www.tandfonline.com/doi/full/10.1080/10618600.2022.2079648
https://github.com/nicholasjclark/mvgam/raw/master/misc/mvgam_cheatsheet.pdf
https://nicholasjclark.github.io/mvgam/articles/data_in_mvgam.html
https://nicholasjclark.github.io/mvgam/articles/shared_states.html
https://nicholasjclark.github.io/mvgam/articles/shared_states.html
https://nicholasjclark.github.io/mvgam/articles/time_varying_effects.html
https://nicholasjclark.github.io/mvgam/articles/time_varying_effects.html
https://nicholasjclark.github.io/mvgam/articles/trend_formulas.html
https://ecogambler.netlify.app/blog/time-varying-seasonality/
https://ecogambler.netlify.app/blog/time-varying-seasonality/
https://ecogambler.netlify.app/blog/autocorrelated-gams/

mvgam 57

• 4. Change default priors using appropriate prior knowledge (see prior)

• 5. Fit the model using either Hamiltonian Monte Carlo or an approximation algorithm (i.e.
change the backend argument) and use summary.mvgam, conditional_effects.mvgam, mcmc_plot.mvgam,
pp_check.mvgam and plot.mvgam to inspect / interrogate the model

• 6. Update the model as needed and use loo_compare.mvgam for in-sample model compar-
isons, or alternatively use forecast.mvgam and score.mvgam_forecast to compare models
based on out-of-sample forecasts (see the forecast evaluation vignette for guidance)

• 7. When satisfied with the model structure, use predict.mvgam, plot_predictions and/or
plot_slopes for more targeted inferences (see "How to interpret and report nonlinear effects
from Generalized Additive Models" for some guidance on interpreting GAMs)

Value

A list object of class mvgam containing model output, the text representation of the model file,
the mgcv model output (for easily generating simulations at unsampled covariate values), Dunn-
Smyth residuals for each series and key information needed for other functions in the package. See
mvgam-class for details. Use methods(class = "mvgam") for an overview on available methods.

Author(s)

Nicholas J Clark

References

Nicholas J Clark & Konstans Wells (2020). Dynamic generalised additive models (DGAMs) for
forecasting discrete ecological time series. Methods in Ecology and Evolution. 14:3, 771-784.

See Also

jagam, gam, gam.models, get_mvgam_priors

Examples

Simulate a collection of three time series that have shared seasonal dynamics
and independent AR1 trends, with a Poisson observation process
set.seed(0)
dat <- sim_mvgam(T = 80,

n_series = 3,
mu = 2,
trend_model = AR(p = 1),
prop_missing = 0.1,
prop_trend = 0.6)

Plot key summary statistics for a single series
plot_mvgam_series(data = dat$data_train, series = 1)

Plot all series together
plot_mvgam_series(data = dat$data_train, series = 'all')

Formulate a model using Stan where series share a cyclic smooth for

https://nicholasjclark.github.io/mvgam/articles/forecast_evaluation.html
https://ecogambler.netlify.app/blog/interpreting-gams/
https://ecogambler.netlify.app/blog/interpreting-gams/

58 mvgam

seasonality and each series has an independent AR1 temporal process.
Note that 'noncentred = TRUE' will likely give performance gains.
Set run_model = FALSE to inspect the returned objects
mod1 <- mvgam(formula = y ~ s(season, bs = 'cc', k = 6),

data = dat$data_train,
trend_model = AR(),
family = poisson(),
noncentred = TRUE,
use_stan = TRUE,
run_model = FALSE)

View the model code in Stan language
stancode(mod1)

View the data objects needed to fit the model in Stan
sdata1 <- standata(mod1)
str(sdata1)

Now fit the model
mod1 <- mvgam(formula = y ~ s(season, bs = 'cc', k = 6),

data = dat$data_train,
trend_model = AR(),
family = poisson(),
noncentred = TRUE,
chains = 2)

Extract the model summary
summary(mod1)

Plot the estimated historical trend and forecast for one series
plot(mod1, type = 'trend', series = 1)
plot(mod1, type = 'forecast', series = 1)

Residual diagnostics
plot(mod1, type = 'residuals', series = 1)
resids <- residuals(mod1)
str(resids)

Compute the forecast using covariate information in data_test
fc <- forecast(mod1, newdata = dat$data_test)
str(fc)
plot(fc)

Plot the estimated seasonal smooth function
plot(mod1, type = 'smooths')

Plot estimated first derivatives of the smooth
plot(mod1, type = 'smooths', derivatives = TRUE)

Plot partial residuals of the smooth
plot(mod1, type = 'smooths', residuals = TRUE)

Plot posterior realisations for the smooth

mvgam 59

plot(mod1, type = 'smooths', realisations = TRUE)

Plot conditional response predictions using marginaleffects
library(marginaleffects)
conditional_effects(mod1)
plot_predictions(mod1, condition = 'season', points = 0.5)

Generate posterior predictive checks using bayesplot
pp_check(mod1)

Extract observation model beta coefficient draws as a data.frame
beta_draws_df <- as.data.frame(mod1, variable = 'betas')
head(beta_draws_df)
str(beta_draws_df)

Investigate model fit
mc.cores.def <- getOption('mc.cores')
options(mc.cores = 1)
loo(mod1)
options(mc.cores = mc.cores.def)

Example of supplying a trend_map so that some series can share
latent trend processes
sim <- sim_mvgam(n_series = 3)
mod_data <- sim$data_train

Here, we specify only two latent trends; series 1 and 2 share a trend,
while series 3 has it's own unique latent trend
trend_map <- data.frame(series = unique(mod_data$series),

trend = c(1, 1, 2))

Fit the model using AR1 trends
mod <- mvgam(y ~ s(season, bs = 'cc', k = 6),

trend_map = trend_map,
trend_model = AR(),
data = mod_data,
return_model_data = TRUE,
chains = 2)

The mapping matrix is now supplied as data to the model in the 'Z' element
mod$model_data$Z
code(mod)

The first two series share an identical latent trend; the third is different
plot(mod, type = 'trend', series = 1)
plot(mod, type = 'trend', series = 2)
plot(mod, type = 'trend', series = 3)

Example of how to use dynamic coefficients
Simulate a time-varying coefficient for the effect of temperature
set.seed(123)

60 mvgam

N <- 200
beta_temp <- vector(length = N)
beta_temp[1] <- 0.4
for(i in 2:N){
beta_temp[i] <- rnorm(1, mean = beta_temp[i - 1] - 0.0025, sd = 0.05)

}
plot(beta_temp)

Simulate a covariate called 'temp'
temp <- rnorm(N, sd = 1)

Simulate the Gaussian observation process
out <- rnorm(N, mean = 4 + beta_temp * temp,

sd = 0.5)

Gather necessary data into a data.frame; split into training / testing
data = data.frame(out, temp, time = seq_along(temp))
data_train <- data[1:180,]
data_test <- data[181:200,]

Fit the model using the dynamic() formula helper
mod <- mvgam(out ~

dynamic(temp,
scale = FALSE,
k = 40),

family = gaussian(),
data = data_train,
newdata = data_test,
chains = 2)

Inspect the model summary, forecast and time-varying coefficient distribution
summary(mod)
plot(mod, type = 'smooths')
fc <- forecast(mod, newdata = data_test)
plot(fc)

Propagating the smooth term shows how the coefficient is expected to evolve
plot_mvgam_smooth(mod, smooth = 1, newdata = data)
abline(v = 180, lty = 'dashed', lwd = 2)
points(beta_temp, pch = 16)

Example showing how to incorporate an offset; simulate some count data
with different means per series
set.seed(100)
dat <- sim_mvgam(prop_trend = 0, mu = c(0, 2, 2),

seasonality = 'hierarchical')

Add offset terms to the training and testing data
dat$data_train$offset <- 0.5 * as.numeric(dat$data_train$series)
dat$data_test$offset <- 0.5 * as.numeric(dat$data_test$series)

Fit a model that includes the offset in the linear predictor as well as

mvgam 61

hierarchical seasonal smooths
mod <- mvgam(formula = y ~ offset(offset) +

s(series, bs = 're') +
s(season, bs = 'cc') +
s(season, by = series, m = 1, k = 5),
data = dat$data_train,
chains = 2)

Inspect the model file to see the modification to the linear predictor
(eta)
code(mod)

Forecasts for the first two series will differ in magnitude
fc <- forecast(mod, newdata = dat$data_test)
layout(matrix(1:2, ncol = 2))
plot(fc, series = 1, ylim = c(0, 75))
plot(fc, series = 2, ylim = c(0, 75))
layout(1)

Changing the offset for the testing data should lead to changes in
the forecast
dat$data_test$offset <- dat$data_test$offset - 2
fc <- forecast(mod, newdata = dat$data_test)
plot(fc)

Relative Risks can be computed by fixing the offset to the same value
for each series
dat$data_test$offset <- rep(1, NROW(dat$data_test))
preds_rr <- predict(mod, type = 'link', newdata = dat$data_test,

summary = FALSE)
series1_inds <- which(dat$data_test$series == 'series_1')
series2_inds <- which(dat$data_test$series == 'series_2')

Relative Risks are now more comparable among series
layout(matrix(1:2, ncol = 2))
plot(preds_rr[1, series1_inds], type = 'l', col = 'grey75',

ylim = range(preds_rr),
ylab = 'Series1 Relative Risk', xlab = 'Time')

for(i in 2:50){
lines(preds_rr[i, series1_inds], col = 'grey75')

}

plot(preds_rr[1, series2_inds], type = 'l', col = 'darkred',
ylim = range(preds_rr),
ylab = 'Series2 Relative Risk', xlab = 'Time')

for(i in 2:50){
lines(preds_rr[i, series2_inds], col = 'darkred')
}

layout(1)

Example showcasing how cbind() is needed for Binomial observations
Simulate two time series of Binomial trials

62 mvgam-class

trials <- sample(c(20:25), 50, replace = TRUE)
x <- rnorm(50)
detprob1 <- plogis(-0.5 + 0.9*x)
detprob2 <- plogis(-0.1 -0.7*x)
dat <- rbind(data.frame(y = rbinom(n = 50, size = trials, prob = detprob1),

time = 1:50,
series = 'series1',
x = x,
ntrials = trials),

data.frame(y = rbinom(n = 50, size = trials, prob = detprob2),
time = 1:50,
series = 'series2',
x = x,
ntrials = trials))

dat <- dplyr::mutate(dat, series = as.factor(series))
dat <- dplyr::arrange(dat, time, series)
plot_mvgam_series(data = dat, series = 'all')

Fit a model using the binomial() family; must specify observations
and number of trials in the cbind() wrapper
mod <- mvgam(cbind(y, ntrials) ~ series + s(x, by = series),

family = binomial(),
data = dat,
chains = 2)

summary(mod)
pp_check(mod, type = "bars_grouped",

group = "series", ndraws = 50)
pp_check(mod, type = "ecdf_overlay_grouped",

group = "series", ndraws = 50)
conditional_effects(mod, type = 'link')

mvgam-class Fitted mvgam object description

Description

A fitted mvgam object returned by function mvgam. Run methods(class = "mvgam") to see an
overview of available methods.

Details

A mvgam object contains the following elements:

• call the original observation model formula

• trend_call If a trend_formula was supplied, the original trend model formula is returned.
Otherwise NULL

• family character description of the observation distribution

• trend_model character description of the latent trend model

mvgam-class 63

• trend_map data.frame describing the mapping of trend states to observations, if supplied in
the original model. Otherwise NULL

• drift Logical specifying whether a drift term was used in the trend model

• priors If the model priors were updated from their defaults, the prior dataframe will be
returned. Otherwise NULL

• model_output The MCMC object returned by the fitting engine. If the model was fitted using
Stan, this will be an object of class stanfit (see stanfit-class for details). If JAGS was
used as the backend, this will be an object of class runjags (see runjags-class for details)

• model_file The character string model file used to describe the model in either Stan or
JAGS syntax

• model_data If return_model_data was set to TRUE when fitting the model, the list object
containing all data objects needed to condition the model is returned. Each item in the list is
described in detail at the top of the model_file. Otherwise NULL

• inits If return_model_data was set to TRUE when fitting the model, the initial value func-
tions used to initialise the MCMC chains will be returned. Otherwise NULL

• monitor_pars The parameters that were monitored during MCMC sampling are returned as
a character vector

• sp_names A character vector specifying the names for each smoothing parameter

• mgcv_model An object of class gam containing the mgcv version of the observation model.
This object is used for generating the linear predictor matrix when making predictions for
new data. The coefficients in this model object will contain the posterior median coefficients
from the GAM linear predictor, but these are only used if generating plots of smooth functions
that mvgam currently cannot handle (such as plots for three-dimensional smooths). This model
therefore should not be used for inference. See gamObject for details

• trend_mgcv_model If a trend_formula was supplied, an object of class gam containing
the mgcv version of the trend model. Otherwise NULL

• ytimes The matrix object used in model fitting for indexing which series and timepoints were
observed in each row of the supplied data. Used internally by some downstream plotting and
prediction functions

• resids A named list object containing posterior draws of Dunn-Smyth randomized quantile
residuals

• use_lv Logical flag indicating whether latent dynamic factors were used in the model

• n_lv If use_lv == TRUE, the number of latent dynamic factors used in the model

• upper_bounds If bounds were supplied in the original model fit, they will be returned. Oth-
erwise NULL

• obs_data The original data object (either a list or dataframe) supplied in model fitting.

• test_data If test data were supplied (as argument newdata in the original model), it will be
returned. Othwerise NULL

• fit_engine Character describing the fit engine, either as stan or jags

• backend Character describing the backend used for modelling, either as rstan, cmdstanr
or rjags

• algorithm Character describing the algorithm used for finding the posterior, either as sampling,
laplace, pathfinder, meanfield or fullrank

64 mvgam_diagnostics

• max_treedepth If the model was fitted using Stan, the value supplied for the maximum
treedepth tuning parameter is returned (see stan for details). Otherwise NULL

• adapt_delta If the model was fitted using Stan, the value supplied for the adapt_delta tuning
parameter is returned (see stan for details). Otherwise NULL

Author(s)

Nicholas J Clark

See Also

mvgam

mvgam_diagnostics Extract diagnostic quantities of mvgam models

Description

Extract quantities that can be used to diagnose sampling behavior of the algorithms applied by Stan
at the back-end of mvgam.

Usage

S3 method for class 'mvgam'
nuts_params(object, pars = NULL, ...)

S3 method for class 'mvgam'
log_posterior(object, ...)

S3 method for class 'mvgam'
rhat(x, pars = NULL, ...)

S3 method for class 'mvgam'
neff_ratio(object, pars = NULL, ...)

Arguments

object, x A mvgam object.

pars An optional character vector of parameter names. For nuts_params these will
be NUTS sampler parameter names rather than model parameters. If pars is
omitted all parameters are included.

... Arguments passed to individual methods.

Details

For more details see bayesplot-extractors.

mvgam_draws 65

Value

The exact form of the output depends on the method.

Examples

simdat <- sim_mvgam(n_series = 1, trend_model = 'AR1')
mod <- mvgam(y ~ s(season, bs = 'cc', k = 6),

trend_model = AR(),
noncentred = TRUE,
data = simdat$data_train,
chains = 2)

np <- nuts_params(mod)
head(np)

extract the number of divergence transitions
sum(subset(np, Parameter == "divergent__")$Value)

head(neff_ratio(mod))

mvgam_draws Extract posterior draws from fitted mvgam objects

Description

Extract posterior draws in conventional formats as data.frames, matrices, or arrays.

Usage

S3 method for class 'mvgam'
as.data.frame(
x,
row.names = NULL,
optional = TRUE,
variable = "betas",
use_alias = TRUE,
regex = FALSE,
...

)

S3 method for class 'mvgam'
as.matrix(x, variable = "betas", regex = FALSE, use_alias = TRUE, ...)

S3 method for class 'mvgam'
as.array(x, variable = "betas", regex = FALSE, use_alias = TRUE, ...)

S3 method for class 'mvgam'
as_draws(

66 mvgam_draws

x,
variable = NULL,
regex = FALSE,
inc_warmup = FALSE,
use_alias = TRUE,
...

)

S3 method for class 'mvgam'
as_draws_matrix(
x,
variable = NULL,
regex = FALSE,
inc_warmup = FALSE,
use_alias = TRUE,
...

)

S3 method for class 'mvgam'
as_draws_df(
x,
variable = NULL,
regex = FALSE,
inc_warmup = FALSE,
use_alias = TRUE,
...

)

S3 method for class 'mvgam'
as_draws_array(
x,
variable = NULL,
regex = FALSE,
inc_warmup = FALSE,
use_alias = TRUE,
...

)

S3 method for class 'mvgam'
as_draws_list(
x,
variable = NULL,
regex = FALSE,
inc_warmup = FALSE,
use_alias = TRUE,
...

)

mvgam_draws 67

S3 method for class 'mvgam'
as_draws_rvars(x, variable = NULL, regex = FALSE, inc_warmup = FALSE, ...)

Arguments

x list object of class mvgam

row.names Ignored

optional Ignored

variable A character specifying which parameters to extract. Can either be one of the
following options:

• obs_params (other parameters specific to the observation model, such as
overdispsersions for negative binomial models or observation error SD for
gaussian / student-t models)

• betas (beta coefficients from the GAM observation model linear predictor;
default)

• smooth_params (smoothing parameters from the GAM observation model)

• linpreds (estimated linear predictors on whatever link scale was used in
the model)

• trend_params (parameters governing the trend dynamics, such as AR pa-
rameters, trend SD parameters or Gaussian Process parameters)

• trend_betas (beta coefficients from the GAM latent process model linear
predictor; only available if a trend_formula was supplied in the original
model)

• trend_smooth_params (process model GAM smoothing parameters; only
available if a trend_formula was supplied in the original model)

• trend_linpreds (process model linear predictors on the identity scale;
only available if a trend_formula was supplied in the original model)

OR can be a character vector providing the variables to extract

use_alias Logical. If more informative names for parameters are available (i.e. for beta co-
efficients b or for smoothing parameters rho), replace the uninformative names
with the more informative alias. Defaults to TRUE

regex Logical. If not using one of the prespecified options for extractions, should
variable be treated as a (vector of) regular expressions? Any variable in x
matching at least one of the regular expressions will be selected. Defaults to
FALSE.

... Ignored

inc_warmup Should warmup draws be included? Defaults to FALSE.

Value

A data.frame, matrix, or array containing the posterior draws.

68 mvgam_families

Examples

Not run:
sim <- sim_mvgam(family = Gamma())
mod1 <- mvgam(y ~ s(season, bs = 'cc'),

trend_model = 'AR1',
data = sim$data_train,
family = Gamma(),
chains = 2,
samples = 300)

beta_draws_df <- as.data.frame(mod1, variable = 'betas')
head(beta_draws_df)
str(beta_draws_df)

beta_draws_mat <- as.matrix(mod1, variable = 'betas')
head(beta_draws_mat)
str(beta_draws_mat)

shape_pars <- as.matrix(mod1, variable = 'shape', regex = TRUE)
head(shape_pars)
End(Not run)

mvgam_families Supported mvgam families

Description

Supported mvgam families

Usage

tweedie(link = "log")

student_t(link = "identity")

betar(...)

nb(...)

lognormal(...)

student(...)

bernoulli(...)

beta_binomial(...)

nmix(link = "log")

mvgam_families 69

Arguments

link a specification for the family link function. At present these cannot be changed

... Arguments to be passed to the mgcv version of the associated functions

Details

mvgam currently supports the following standard observation families:

• gaussian with identity link, for real-valued data

• poisson with log-link, for count data

• Gamma with log-link, for non-negative real-valued data

• binomial with logit-link, for count data when the number of trials is known (and must be
supplied)

In addition, the following extended families from the mgcv and brms packages are supported:

• betar with logit-link, for proportional data on (0,1)

• nb with log-link, for count data

• lognormal with identity-link, for non-negative real-valued data

• bernoulli with logit-link, for binary data

• beta_binomial with logit-link, as for binomial() but allows for overdispersion

Finally, mvgam supports the three extended families described here:

• tweedie with log-link, for count data (power parameter p fixed at 1.5)

• student_t() (or student) with identity-link, for real-valued data

• nmix for count data with imperfect detection modeled via a State-Space N-Mixture model.
The latent states are Poisson (with log link), capturing the ’true’ latent abundance, while the
observation process is Binomial to account for imperfect detection. The observation formula
in these models is used to set up a linear predictor for the detection probability (with logit
link). See the example below for a more detailed worked explanation of the nmix() family

Only poisson(), nb(), and tweedie() are available if using JAGS. All families, apart from tweedie(),
are supported if using Stan.

Note that currently it is not possible to change the default link functions in mvgam, so any call to
change these will be silently ignored

Value

Objects of class family

Author(s)

Nicholas J Clark

70 mvgam_families

Examples

Example showing how to set up N-mixture models
set.seed(999)
Simulate observations for species 1, which shows a declining trend and 0.7 detection probability
data.frame(site = 1,

five replicates per year; six years
replicate = rep(1:5, 6),
time = sort(rep(1:6, 5)),
species = 'sp_1',
true abundance declines nonlinearly
truth = c(rep(28, 5),

rep(26, 5),
rep(23, 5),
rep(16, 5),
rep(14, 5),
rep(14, 5)),

observations are taken with detection prob = 0.7
obs = c(rbinom(5, 28, 0.7),

rbinom(5, 26, 0.7),
rbinom(5, 23, 0.7),
rbinom(5, 15, 0.7),
rbinom(5, 14, 0.7),
rbinom(5, 14, 0.7))) %>%

add 'series' information, which is an identifier of site, replicate and species
dplyr::mutate(series = paste0('site_', site,

'_', species,
'_rep_', replicate),

time = as.numeric(time),
add a 'cap' variable that defines the maximum latent N to
marginalize over when estimating latent abundance; in other words
how large do we realistically think the true abundance could be?
cap = 80) %>%

dplyr::select(- replicate) -> testdat

Now add another species that has a different temporal trend and a smaller
detection probability (0.45 for this species)
testdat = testdat %>%
dplyr::bind_rows(data.frame(site = 1,

replicate = rep(1:5, 6),
time = sort(rep(1:6, 5)),
species = 'sp_2',
truth = c(rep(4, 5),

rep(7, 5),
rep(15, 5),
rep(16, 5),
rep(19, 5),
rep(18, 5)),

obs = c(rbinom(5, 4, 0.45),
rbinom(5, 7, 0.45),
rbinom(5, 15, 0.45),
rbinom(5, 16, 0.45),
rbinom(5, 19, 0.45),

mvgam_families 71

rbinom(5, 18, 0.45))) %>%
dplyr::mutate(series = paste0('site_', site,

'_', species,
'_rep_', replicate),

time = as.numeric(time),
cap = 50) %>%

dplyr::select(-replicate))

series identifiers
testdat$species <- factor(testdat$species,

levels = unique(testdat$species))
testdat$series <- factor(testdat$series,

levels = unique(testdat$series))

The trend_map to state how replicates are structured
testdat %>%
each unique combination of site*species is a separate process
dplyr::mutate(trend = as.numeric(factor(paste0(site, species)))) %>%
dplyr::select(trend, series) %>%
dplyr::distinct() -> trend_map

trend_map

Fit a model
mod <- mvgam(

the observation formula sets up linear predictors for
detection probability on the logit scale
formula = obs ~ species - 1,

the trend_formula sets up the linear predictors for
the latent abundance processes on the log scale
trend_formula = ~ s(time, by = trend, k = 4) + species,

the trend_map takes care of the mapping
trend_map = trend_map,

nmix() family and data
family = nmix(),
data = testdat,

priors can be set in the usual way
priors = c(prior(std_normal(), class = b),

prior(normal(1, 1.5), class = Intercept_trend)),
chains = 2)

The usual diagnostics
summary(mod)

Plotting conditional effects
library(ggplot2); library(marginaleffects)
plot_predictions(mod, condition = 'species',

type = 'detection') +
ylab('Pr(detection)') +
ylim(c(0, 1)) +

72 mvgam_forecast-class

theme_classic() +
theme(legend.position = 'none')

Example showcasing how cbind() is needed for Binomial observations
Simulate two time series of Binomial trials
trials <- sample(c(20:25), 50, replace = TRUE)
x <- rnorm(50)
detprob1 <- plogis(-0.5 + 0.9*x)
detprob2 <- plogis(-0.1 -0.7*x)
dat <- rbind(data.frame(y = rbinom(n = 50, size = trials, prob = detprob1),

time = 1:50,
series = 'series1',
x = x,
ntrials = trials),

data.frame(y = rbinom(n = 50, size = trials, prob = detprob2),
time = 1:50,
series = 'series2',
x = x,
ntrials = trials))

dat <- dplyr::mutate(dat, series = as.factor(series))
dat <- dplyr::arrange(dat, time, series)

Fit a model using the binomial() family; must specify observations
and number of trials in the cbind() wrapper
mod <- mvgam(cbind(y, ntrials) ~ series + s(x, by = series),

family = binomial(),
data = dat)

summary(mod)

mvgam_forecast-class mvgam_forecast object description

Description

A mvgam_forecast object returned by function hindcast or forecast. Run methods(class =
"mvgam_forecast") to see an overview of available methods.

Details

A mvgam_forecast object contains the following elements:

• call the original observation model formula

• trend_call If a trend_formula was supplied, the original trend model formula is returned.
Otherwise NULL

• family character description of the observation distribution

• family_pars list containing draws of family-specific parameters (i.e. shape, scale or overdis-
persion parameters). Only returned if type = link. Otherwise NULL

• trend_model character description of the latent trend model

mvgam_formulae 73

• drift Logical specifying whether a drift term was used in the trend model

• use_lv Logical flag indicating whether latent dynamic factors were used in the model

• fit_engine Character describing the fit engine, either as stan or jags

• type The type of predictions included (either link, response or trend)

• series_names Names of the time series, taken from levels(data$series) in the original
model fit

• train_observations A list of training observation vectors of length n_series

• train_times A vector of the unique training times

• test_observations If the forecast function was used, a list of test observation vectors of
length n_series. Otherwise NULL

• test_times If the forecast function was used, a vector of the unique validation (testing)
times. Otherwise NULL

• hindcasts A list of posterior hindcast distributions of length n_series.

• forecasts If the forecast function was used, a list of posterior forecast distributions of
length n_series. Otherwise NULL

Author(s)

Nicholas J Clark

See Also

mvgam, hindcast.mvgam, forecast.mvgam

mvgam_formulae Details of formula specifications in mvgam

Description

Details of formula specifications in mvgam

Details

mvgam will accept an observation model formula and an optional process model formula (via the
argument trend_formula). Neither of these formulae can be specified as lists, contrary to the ac-
cepted behaviour in some mgcv or brms models.

Note that it is possible to supply an empty formula where there are no predictors or intercepts
in the observation model (i.e. y ~ 0 or y ~ -1). In this case, an intercept-only observation model
will be set up but the intercept coefficient will be fixed at zero. This can be handy if you wish to fit
pure State-Space models where the variation in the dynamic trend controls the average expectation,
and/or where intercepts are non-identifiable.

The formulae supplied to mvgam are exactly like those supplied to glm except that smooth terms,

74 mvgam_irf-class

s, te, ti and t2, time-varying effects using dynamic, monotonically increasing (using s(x, bs =
'moi')) or decreasing splines (using s(x, bs = 'mod'); see smooth.construct.moi.smooth.spec
for details), as well as Gaussian Process functions using gp, can be added to the right hand side (and
. is not supported in mvgam formulae).

Further details on specifying different kinds of smooth functions, and how to control their be-
haviours by modifying their potential complexities and / or how the penalties behave, can be found
in the extensive documentation for the mgcv package.

Author(s)

Nicholas J Clark

See Also

mvgam, formula.gam, gam.models, jagam, gam, s, gp, formula

mvgam_irf-class mvgam_irf object description

Description

A mvgam_irf object returned by function irf. Run methods(class = "mvgam_irf") to see an
overview of available methods.

Details

A mvgam_irf object contains a list of posterior IRFs, each stored as its own list

Author(s)

Nicholas J Clark

See Also

mvgam, VAR

mvgam_marginaleffects 75

mvgam_marginaleffects Helper functions for mvgam marginaleffects calculations

Description

Helper functions for mvgam marginaleffects calculations

Functions needed for working with marginaleffects

Functions needed for getting data / objects with insight

Usage

S3 method for class 'mvgam'
get_coef(model, trend_effects = FALSE, ...)

S3 method for class 'mvgam'
set_coef(model, coefs, trend_effects = FALSE, ...)

S3 method for class 'mvgam'
get_vcov(model, vcov = NULL, ...)

S3 method for class 'mvgam'
get_predict(model, newdata, type = "response", process_error = FALSE, ...)

S3 method for class 'mvgam'
get_data(x, source = "environment", verbose = TRUE, ...)

S3 method for class 'mvgam_prefit'
get_data(x, source = "environment", verbose = TRUE, ...)

S3 method for class 'mvgam'
find_predictors(
x,
effects = c("fixed", "random", "all"),
component = c("all", "conditional", "zi", "zero_inflated", "dispersion", "instruments",

"correlation", "smooth_terms"),
flatten = FALSE,
verbose = TRUE,
...

)

S3 method for class 'mvgam_prefit'
find_predictors(
x,
effects = c("fixed", "random", "all"),
component = c("all", "conditional", "zi", "zero_inflated", "dispersion", "instruments",

"correlation", "smooth_terms"),

76 mvgam_marginaleffects

flatten = FALSE,
verbose = TRUE,
...

)

Arguments

model Model object

trend_effects logical, extract from the process model component (only applicable if a trend_formula
was specified in the model)

... Additional arguments are passed to the predict() method supplied by the
modeling package.These arguments are particularly useful for mixed-effects or
bayesian models (see the online vignettes on the marginaleffects website).
Available arguments can vary from model to model, depending on the range
of supported arguments by each modeling package. See the "Model-Specific
Arguments" section of the ?slopes documentation for a non-exhaustive list of
available arguments.

coefs vector of coefficients to insert in the model object

vcov Type of uncertainty estimates to report (e.g., for robust standard errors). Accept-
able values:

• FALSE: Do not compute standard errors. This can speed up computation
considerably.

• TRUE: Unit-level standard errors using the default vcov(model) variance-
covariance matrix.

• String which indicates the kind of uncertainty estimates to return.
– Heteroskedasticity-consistent: "HC", "HC0", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich::vcovHC

– Heteroskedasticity and autocorrelation consistent: "HAC"
– Mixed-Models degrees of freedom: "satterthwaite", "kenward-roger"
– Other: "NeweyWest", "KernHAC", "OPG". See the sandwich package

documentation.
• One-sided formula which indicates the name of cluster variables (e.g., ~unit_id).

This formula is passed to the cluster argument of the sandwich::vcovCL
function.

• Square covariance matrix
• Function which returns a covariance matrix (e.g., stats::vcov(model))

newdata Grid of predictor values at which we evaluate the slopes.

• Warning: Please avoid modifying your dataset between fitting the model
and calling a marginaleffects function. This can sometimes lead to un-
expected results.

• NULL (default): Unit-level slopes for each observed value in the dataset (em-
pirical distribution). The dataset is retrieved using insight::get_data(),
which tries to extract data from the environment. This may produce unex-
pected results if the original data frame has been altered since fitting the
model.

mvgam_marginaleffects 77

• datagrid() call to specify a custom grid of regressors. For example:
– newdata = datagrid(cyl = c(4, 6)): cyl variable equal to 4 and 6

and other regressors fixed at their means or modes.
– See the Examples section and the datagrid() documentation.

• subset() call with a single argument to select a subset of the dataset used
to fit the model, ex: newdata = subset(treatment == 1)

• dplyr::filter() call with a single argument to select a subset of the
dataset used to fit the model, ex: newdata = filter(treatment == 1)

• string:
– "mean": Marginal Effects at the Mean. Slopes when each predictor is

held at its mean or mode.
– "median": Marginal Effects at the Median. Slopes when each predictor

is held at its median or mode.
– "marginalmeans": Marginal Effects at Marginal Means. See Details

section below.
– "tukey": Marginal Effects at Tukey’s 5 numbers.
– "grid": Marginal Effects on a grid of representative numbers (Tukey’s

5 numbers and unique values of categorical predictors).

type string indicates the type (scale) of the predictions used to compute contrasts or
slopes. This can differ based on the model type, but will typically be a string
such as: "response", "link", "probs", or "zero". When an unsupported string
is entered, the model-specific list of acceptable values is returned in an error
message. When type is NULL, the first entry in the error message is used by
default.

process_error logical. If TRUE, uncertainty in the latent process (or trend) model is incorpo-
rated in predictions

x A fitted model.

source String, indicating from where data should be recovered. If source = "environment"
(default), data is recovered from the environment (e.g. if the data is in the
workspace). This option is usually the fastest way of getting data and ensures
that the original variables used for model fitting are returned. Note that always
the current data is recovered from the environment. Hence, if the data was
modified after model fitting (e.g., variables were recoded or rows filtered), the
returned data may no longer equal the model data. If source = "frame" (or
"mf"), the data is taken from the model frame. Any transformed variables are
back-transformed, if possible. This option returns the data even if it is not avail-
able in the environment, however, in certain edge cases back-transforming to
the original data may fail. If source = "environment" fails to recover the data,
it tries to extract the data from the model frame; if source = "frame" and data
cannot be extracted from the model frame, data will be recovered from the envi-
ronment. Both ways only returns observations that have no missing data in the
variables used for model fitting.

verbose Toggle messages and warnings.

effects Should model data for fixed effects ("fixed"), random effects ("random") or
both ("all") be returned? Only applies to mixed or gee models.

78 mvgam_trends

component Should all predictor variables, predictor variables for the conditional model, the
zero-inflated part of the model, the dispersion term or the instrumental variables
be returned? Applies to models with zero-inflated and/or dispersion formula, or
to models with instrumental variable (so called fixed-effects regressions). May
be abbreviated. Note that the conditional component is also called count or
mean component, depending on the model.

flatten Logical, if TRUE, the values are returned as character vector, not as list. Dupli-
cated values are removed.

Value

Objects suitable for internal ’marginaleffects’ functions to proceed. See marginaleffects::get_coef(),
marginaleffects::set_coef(), marginaleffects::get_vcov(), marginaleffects::get_predict(),
insight::get_data() and insight::find_predictors() for details

Author(s)

Nicholas J Clark

mvgam_trends Supported mvgam trend models

Description

Supported mvgam trend models

Details

mvgam currently supports the following dynamic trend models:

• None (no latent trend component; i.e. the GAM component is all that contributes to the linear
predictor, and the observation process is the only source of error; similarly to what is estimated
by gam)

• RW()

• AR(p = 1, 2, or 3)

• CAR(p = 1)(continuous time autoregressive trends; only available in Stan)
• VAR()(only available in Stan)
• PW() (piecewise linear or logistic trends; only available in Stan)
• GP() (Gaussian Process with squared exponential kernel; only available in Stan)

For most dynamic trend types available in mvgam (see argument trend_model), time should be
measured in discrete, regularly spaced intervals (i.e. c(1, 2, 3, ...)). However you can use
irregularly spaced intervals if using trend_model = CAR(1), though note that any temporal intervals
that are exactly 0 will be adjusted to a very small number (1e-12) to prevent sampling errors. For
all trend types apart from GP(), PW(), and CAR(), moving average and/or correlated process error
terms can also be estimated (for example, RW(cor = TRUE) will set up a multivariate Random Walk
if data contains >1 series). Character strings can also be supplied instead of the various trend
functions. The full list of possible models that are currently supported is:

mvgam_trends 79

• ’RW’

• ’RWMA’

• ’RWcor’

• ’RWMAcor’

• ’AR1’

• ’AR1MA’

• ’AR1cor’

• ’AR1MAcor’

• ’AR2’

• ’AR2MA’

• ’AR2cor’

• ’AR2MAcor’

• ’AR3’

• ’AR3MA’

• ’AR3cor’

• ’AR3MAcor’

• ’CAR1’

• ’VAR’

• ’VARcor’

• ’VAR1’ (same as ’VAR’)

• ’VAR1cor’ (same as ’VARcor’)

• ’VARMA’

• ’VARMAcor’

• ’VARMA1,1cor’

• ’PWlinear’

• ’PWlogistic’

• ’GP’

• ’None’

Note that only RW, AR1, AR2 and AR3 are available if using JAGS. All trend models are supported
if using Stan. Dynamic factor models can be used in which the latent factors evolve as either RW,
AR1-3, VAR or GP. For VAR models (i.e. VAR and VARcor models), users can either fix the trend error
covariances to be 0 (using VAR) or estimate them and potentially allow for contemporaneously corre-
lated errors using VARcor. For all VAR models, stationarity of the latent process is enforced through
the prior using the parameterisation given by Heaps (2022). Stationarity is not enforced when us-
ing AR1, AR2 or AR3 models, though this can be changed by the user by specifying lower and upper
bounds on autoregressive parameters using functionality in get_mvgam_priors and the priors argu-
ment in mvgam. Piecewise trends follow the formulation in the popular prophet package produced
by Facebook, where users can allow for changepoints to control the potential flexibility of the trend.
See Taylor and Letham (2018) for details

80 pairs.mvgam

References

Sarah E. Heaps (2022) Enforcing stationarity through the prior in Vector Autoregressions. Journal
of Computational and Graphical Statistics. 32:1, 1-10.

Sean J. Taylor and Benjamin Letham (2018) Forecasting at scale. The American Statistician 72.1,
37-45.

See Also

RW, AR, CAR, VAR, PW, GP

pairs.mvgam Create a matrix of output plots from a mvgam object

Description

A pairs method that is customized for MCMC output.

Usage

S3 method for class 'mvgam'
pairs(x, variable = NULL, regex = FALSE, use_alias = TRUE, ...)

Arguments

x An object of class mvgam

variable Names of the variables (parameters) to plot, as given by a character vector or
a regular expression (if regex = TRUE). By default, a hopefully not too large
selection of variables is plotted.

regex Logical; Indicates whether variable should be treated as regular expressions.
Defaults to FALSE.

use_alias Logical. If more informative names for parameters are available (i.e. for beta co-
efficients b or for smoothing parameters rho), replace the uninformative names
with the more informative alias. Defaults to TRUE

... Further arguments to be passed to mcmc_pairs.

Details

For a detailed description see mcmc_pairs.

Value

Plottable objects whose classes depend on the arguments supplied. See mcmc_pairs for details.

plot.mvgam 81

Examples

simdat <- sim_mvgam(n_series = 1, trend_model = 'AR1')
mod <- mvgam(y ~ s(season, bs = 'cc'),

trend_model = AR(),
noncentred = TRUE,
data = simdat$data_train,
chains = 2)

pairs(mod)
pairs(mod, variable = c('ar1', 'sigma'), regex = TRUE)

plot.mvgam Default mvgam plots

Description

This function takes a fitted mvgam object and produces plots of smooth functions, forecasts, trends
and uncertainty components

Usage

S3 method for class 'mvgam'
plot(
x,
type = "residuals",
series = 1,
residuals = FALSE,
newdata,
data_test,
trend_effects = FALSE,
...

)

Arguments

x list object returned from mvgam. See mvgam()

type character specifying which type of plot to return. Options are: series, residu-
als, smooths, re (random effect smooths), pterms (parametric effects), forecast,
trend, uncertainty, factors

series integer specifying which series in the set is to be plotted. This is ignored if
type == 're'

residuals logical. If TRUE and type = 'smooths', posterior quantiles of partial residu-
als are added to plots of 1-D smooths as a series of ribbon rectangles. Partial
residuals for a smooth term are the median Dunn-Smyth residuals that would be
obtained by dropping the term concerned from the model, while leaving all other

82 plot.mvgam

estimates fixed (i.e. the estimates for the term plus the original median Dunn-
Smyth residuals). Note that because mvgam works with Dunn-Smyth residuals
and not working residuals, which are used by mgcv, the magnitudes of partial
residuals will be different to what you would expect from plot.gam. Interpre-
tation is similar though, as these partial residuals should be evenly scattered
around the smooth function if the function is well estimated

newdata Optional dataframe or list of test data containing at least ’series’ and ’time’
in addition to any other variables included in the linear predictor of the original
formula. This argument is optional when plotting out of sample forecast period
observations (when type = forecast) and required when plotting uncertainty
components (type = uncertainty).

data_test Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

trend_effects logical. If TRUE and a trend_formula was used in model fitting, terms from the
trend (i.e. process) model will be plotted

... Additional arguments for each individual plotting function.

Details

These plots are useful for getting an overview of the fitted model and its estimated random effects or
smooth functions, but the individual plotting functions and the functions from the marginaleffects
and gratia packages offer far more more customisation.

Value

A base R plot or set of plots

Author(s)

Nicholas J Clark

See Also

plot_mvgam_resids, plot_mvgam_smooth, plot_mvgam_fc, plot_mvgam_trend, plot_mvgam_uncertainty,
plot_mvgam_factors, plot_mvgam_randomeffects, conditional_effects.mvgam, plot_predictions,
plot_slopes, gratia_mvgam_enhancements

Examples

Simulate some time series
dat <- sim_mvgam(T = 80, n_series = 3)

Fit a basic model
mod <- mvgam(y ~ s(season, bs = 'cc') + s(series, bs = 're'),

data = dat$data_train,
trend_model = RW(),
chains = 2)

Plot predictions and residuals for each series

plot.mvgam_irf 83

plot(mod, type = 'forecast', series = 1)
plot(mod, type = 'forecast', series = 2)
plot(mod, type = 'forecast', series = 3)
plot(mod, type = 'residuals', series = 1)
plot(mod, type = 'residuals', series = 2)
plot(mod, type = 'residuals', series = 3)

Plot model effects
plot(mod, type = 'smooths')
plot(mod, type = 're')

More flexible plots with 'marginaleffects' utilities
library(marginaleffects)
plot_predictions(mod, condition = 'season', type = 'link')
plot_predictions(mod,

condition = c('season', 'series', 'series'),
type = 'link')

plot_predictions(mod, condition = 'series', type = 'link')

When using a State-Space model with predictors on the process
model, set trend_effects = TRUE to visualise process effects
mod <- mvgam(y ~ -1,

trend_formula = ~ s(season, bs = 'cc'),
data = dat$data_train,
trend_model = RW(),
chains = 2)

plot(mod, type = 'smooths', trend_effects = TRUE)

But marginaleffects functions work without any modification
plot_predictions(mod, condition = 'season', type = 'link')

plot.mvgam_irf Plot impulse responses from an mvgam_irf object This function takes
an mvgam_irf object and produces plots of Impulse Response Func-
tions

Description

Plot impulse responses from an mvgam_irf object This function takes an mvgam_irf object and
produces plots of Impulse Response Functions

Usage

S3 method for class 'mvgam_irf'
plot(x, series = 1, ...)

84 plot.mvgam_lfo

Arguments

x list object of class mvgam_irf. See irf()

series integer specifying which process series should be given the shock

... ignored

Value

A base R plot or set of plots

Author(s)

Nicholas J Clark

plot.mvgam_lfo Plot Pareto-k and ELPD values from a leave-future-out object

Description

This function takes an object of class mvgam_lfo and creates several informative diagnostic plots

Usage

S3 method for class 'mvgam_lfo'
plot(x, ...)

Arguments

x An object of class mvgam_lfo

... Ignored

Value

A base R plot of Pareto-k and ELPD values over the evaluation timepoints. For the Pareto-k plot, a
dashed red line indicates the specified threshold chosen for triggering model refits. For the ELPD
plot, a dashed red line indicates the bottom 10% quantile of ELPD values. Points below this thresh-
old may represent outliers that were more difficult to forecast

plot_mvgam_factors 85

plot_mvgam_factors Latent factor summaries for a fitted mvgam object

Description

This function takes a fitted mvgam object and returns plots and summary statistics for the latent
dynamic factors

Usage

plot_mvgam_factors(object, plot = TRUE)

Arguments

object list object returned from mvgam. See mvgam()

plot logical specifying whether factors should be plotted

Details

If the model in object was estimated using dynamic factors, it is possible that not all factors
contributed to the estimated trends. This is due to the regularisation penalty that acts independently
on each factor’s Gaussian precision, which will squeeze un-needed factors to a white noise process
(effectively dropping that factor from the model). In this function, each factor is tested against a
null hypothesis of white noise by calculating the sum of the factor’s 2nd derivatives. A factor that
has a larger contribution will have a larger sum due to the weaker penalty on the factor’s precision.
If plot == TRUE, the factors are also plotted.

Value

A dataframe of factor contributions and, optionally, a series of base R plots

Author(s)

Nicholas J Clark

Examples

simdat <- sim_mvgam()
mod <- mvgam(y ~ s(season, bs = 'cc',

k = 6),
trend_model = AR(),
use_lv = TRUE,
n_lv = 2,
data = simdat$data_train,
chains = 2)

plot_mvgam_factors(mod)

86 plot_mvgam_forecasts

plot_mvgam_forecasts Plot mvgam posterior predictions for a specified series

Description

Plot mvgam posterior predictions for a specified series

Usage

plot_mvgam_fc(
object,
series = 1,
newdata,
data_test,
realisations = FALSE,
n_realisations = 15,
hide_xlabels = FALSE,
xlab,
ylab,
ylim,
n_cores = 1,
return_forecasts = FALSE,
return_score = FALSE,
...

)

S3 method for class 'mvgam_forecast'
plot(
x,
series = 1,
realisations = FALSE,
n_realisations = 15,
hide_xlabels = FALSE,
xlab,
ylab,
ylim,
return_score = FALSE,
...

)

Arguments

object list object returned from mvgam. See mvgam()

series integer specifying which series in the set is to be plotted

newdata Optional dataframe or list of test data containing at least ’series’ and ’time’
in addition to any other variables included in the linear predictor of the origi-
nal formula. If included, the covariate information in newdata will be used to

plot_mvgam_forecasts 87

generate forecasts from the fitted model equations. If this same newdata was
originally included in the call to mvgam, then forecasts have already been pro-
duced by the generative model and these will simply be extracted and plotted.
However if no newdata was supplied to the original model call, an assumption
is made that the newdata supplied here comes sequentially after the data sup-
plied as data in the original model (i.e. we assume there is no time gap between
the last observation of series 1 in data and the first observation for series 1 in
newdata). If newdata contains observations in column y, these observations
will be used to compute a Discrete Rank Probability Score for the forecast dis-
tribution

data_test Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

realisations logical. If TRUE, forecast realisations are shown as a spaghetti plot, making
it easier to visualise the diversity of possible forecasts. If FALSE, the default,
empirical quantiles of the forecast distribution are shown

n_realisations integer specifying the number of posterior realisations to plot, if realisations
= TRUE. Ignored otherwise

hide_xlabels logical. If TRUE, no xlabels are printed to allow the user to add custom labels
using axis from base R

xlab label for x axis.

ylab label for y axis.

ylim Optional vector of y-axis limits (min, max)

n_cores integer specifying number of cores for generating forecasts in parallel
return_forecasts

logical. If TRUE, the function will plot the forecast as well as returning the
forecast object (as a matrix of dimension n_samples x horizon)

return_score logical. If TRUE and out of sample test data is provided as newdata, a proba-
bilistic score will be calculated and returned. The score used will depend on the
observation family from the fitted model. Discrete families (poisson, negative
binomial, tweedie) use the Discrete Rank Probability Score. Other families
use the Continuous Rank Probability Score. The value returned is the sum of all
scores within the out of sample forecast horizon

... further par graphical parameters.

x Object of class mvgam_forecast

Details

plot_mvgam_fc generates posterior predictions from an object of class mvgam, calculates posterior
empirical quantiles and plots them against the observed data. If realisations = FALSE, the re-
turned plot shows 90, 60, 40 and 20 percent posterior quantiles (as ribbons of increasingly darker
shades or red) as well as the posterior median (as a dark red line). If realisations = FALSE, a set
of n_realisations posterior draws are shown.

plot.mvgam_forecast takes an object of class mvgam_forecast, in which forecasts have already
been computed, and plots the resulting forecast distribution.

88 plot_mvgam_pterms

If realisations = FALSE, these posterior quantiles are plotted along with the true observed data
that was used to train the model. Otherwise, a spaghetti plot is returned to show possible forecast
paths.

Value

A base R graphics plot and an optional list containing the forecast distribution and the out of
sample probabilistic forecast score

plot_mvgam_pterms Plot mvgam parametric term partial effects

Description

This function plots posterior empirical quantiles for partial effects of parametric terms

Usage

plot_mvgam_pterms(object, trend_effects = FALSE)

Arguments

object list object returned from mvgam. See mvgam()

trend_effects logical. If TRUE and a trend_formula was used in model fitting, terms from the
trend (i.e. process) model will be plotted

Details

Posterior empirical quantiles of each parametric term’s partial effect estimates (on the link scale)
are calculated and visualised as ribbon plots. These effects can be interpreted as the partial effect
that a parametric term contributes when all other terms in the model have been set to 0

Value

A base R graphics plot

plot_mvgam_randomeffects 89

plot_mvgam_randomeffects

Plot mvgam random effect terms

Description

This function plots posterior empirical quantiles for random effect smooths (bs = re)

Usage

plot_mvgam_randomeffects(object, trend_effects = FALSE)

Arguments

object list object returned from mvgam. See mvgam()

trend_effects logical. If TRUE and a trend_formula was used in model fitting, terms from the
trend (i.e. process) model will be plotted

Details

Posterior empirical quantiles of random effect coefficient estimates (on the link scale) are calculated
and visualised as ribbon plots. Labels for coefficients are taken from the levels of the original factor
variable that was used to specify the smooth in the model’s formula

Value

A base R graphics plot

plot_mvgam_resids Residual diagnostics for a fitted mvgam object

Description

This function takes a fitted mvgam object and returns various residual diagnostic plots

Usage

plot_mvgam_resids(object, series = 1, newdata, data_test)

90 plot_mvgam_series

Arguments

object list object returned from mvgam. See mvgam()

series integer specifying which series in the set is to be plotted

newdata Optional dataframe or list of test data containing at least ’series’, ’y’, and
’time’ in addition to any other variables included in the linear predictor of formula.
If included, the covariate information in newdata will be used to generate fore-
casts from the fitted model equations. If this same newdata was originally in-
cluded in the call to mvgam, then forecasts have already been produced by the
generative model and these will simply be extracted and used to calculate resid-
uals. However if no newdata was supplied to the original model call, an as-
sumption is made that the newdata supplied here comes sequentially after the
data supplied as data in the original model (i.e. we assume there is no time gap
between the last observation of series 1 in data_train and the first observation
for series 1 in newdata).

data_test Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

Details

A total of four base R plots are generated to examine Dunn-Smyth residuals for the specified series.
Plots include a residuals vs fitted values plot, a Q-Q plot, and two plots to check for any remaining
temporal autocorrelation in the residuals. Note, all plots use posterior medians of fitted values /
residuals, so uncertainty is not represented.

Value

A series of base R plots

Author(s)

Nicholas J Clark

plot_mvgam_series Plot observed time series used for mvgam modelling

Description

This function takes either a fitted mvgam object or a data_train object and produces plots of ob-
served time series, ACF, CDF and histograms for exploratory data analysis

Usage

plot_mvgam_series(
object,
data,
data_train,

plot_mvgam_series 91

newdata,
data_test,
y = "y",
lines = TRUE,
series = 1,
n_bins,
log_scale = FALSE

)

Arguments

object Optional list object returned from mvgam. Either object or data_train must
be supplied.

data Optional dataframe or list of training data containing at least ’series’ and
’time’. Use this argument if training data have been gathered in the correct
format for mvgam modelling but no model has yet been fitted.

data_train Deprecated. Still works in place of data but users are recommended to use data
instead for more seamless integration into R workflows

newdata Optional dataframe or list of test data containing at least ’series’ and ’time’
for the forecast horizon, in addition to any other variables included in the lin-
ear predictor of formula. If included, the observed values in the test data are
compared to the model’s forecast distribution for exploring biases in model pre-
dictions.

data_test Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

y Character. What is the name of the outcome variable in the supplied data? De-
faults to 'y'

lines Logical. If TRUE, line plots are used for visualising time series. If FALSE, points
are used.

series Either a integer specifying which series in the set is to be plotted or the string
’all’, which plots all series available in the supplied data

n_bins integer specifying the number of bins to use for binning observed values when
plotting a the histogram. Default is to use the number of bins returned by a call
to hist in base R

log_scale logical. If series == 'all', this flag is used to control whether the time series
plot is shown on the log scale (using log(Y + 1)). This can be useful when vi-
sualising many series that may have different observed ranges. Default is FALSE

Value

A set of base R graphics plots. If series is an integer, the plots will show observed time series,
autocorrelation and cumulative distribution functions, and a histogram for the series. If series ==
'all', a set of observed time series plots is returned in which all series are shown on each plot but
only a single focal series is highlighted, with all remaining series shown as faint gray lines.

92 plot_mvgam_smooth

Author(s)

Nicholas J Clark

Examples

Simulate and plot series with observations bounded at 0 and 1 (Beta responses)
sim_data <- sim_mvgam(family = betar(),

trend_model = RW(), prop_trend = 0.6)
plot_mvgam_series(data = sim_data$data_train, series = 'all')
plot_mvgam_series(data = sim_data$data_train,

newdata = sim_data$data_test, series = 1)

Now simulate series with overdispersed discrete observations
sim_data <- sim_mvgam(family = nb(), trend_model = RW(),

prop_trend = 0.6, phi = 10)
plot_mvgam_series(data = sim_data$data_train, series = 'all')

plot_mvgam_smooth Plot mvgam smooth terms

Description

This function plots posterior empirical quantiles for a series-specific smooth term

Usage

plot_mvgam_smooth(
object,
trend_effects = FALSE,
series = 1,
smooth,
residuals = FALSE,
n_resid_bins = 25,
realisations = FALSE,
n_realisations = 15,
derivatives = FALSE,
newdata

)

Arguments

object list object returned from mvgam. See mvgam()

trend_effects logical. If TRUE and a trend_formula was used in model fitting, terms from the
trend (i.e. process) model will be plotted

series integer specifying which series in the set is to be plotted

smooth either a character or integer specifying which smooth term to be plotted

plot_mvgam_smooth 93

residuals logical. If TRUE then posterior quantiles of partial residuals are added to plots
of 1-D smooths as a series of ribbon rectangles. Partial residuals for a smooth
term are the median Dunn-Smyth residuals that would be obtained by dropping
the term concerned from the model, while leaving all other estimates fixed (i.e.
the estimates for the term plus the original median Dunn-Smyth residuals). Note
that because mvgam works with Dunn-Smyth residuals and not working residu-
als, which are used by mgcv, the magnitudes of partial residuals will be different
to what you would expect from plot.gam. Interpretation is similar though, as
these partial residuals should be evenly scattered around the smooth function if
the function is well estimated

n_resid_bins integer specifying the number of bins group the covariate into when plotting
partial residuals. Setting this argument too high can make for messy plots that
are difficult to interpret, while setting it too low will likely mask some potentially
useful patterns in the partial residuals. Default is 25

realisations logical. If TRUE, posterior realisations are shown as a spaghetti plot, making
it easier to visualise the diversity of possible functions. If FALSE, the default,
empirical quantiles of the posterior distribution are shown

n_realisations integer specifying the number of posterior realisations to plot, if realisations
= TRUE. Ignored otherwise

derivatives logical. If TRUE, an additional plot will be returned to show the estimated
1st derivative for the specified smooth (Note, this only works for univariate
smooths)

newdata Optional dataframe for predicting the smooth, containing at least ’series’ in
addition to any other variables included in the linear predictor of the original
model’s formula. Note that this currently is only supported for plotting univari-
ate smooths

Details

Smooth functions are shown as empirical quantiles (or spaghetti plots) of posterior partial expecta-
tions across a sequence of values between the variable’s min and max, while zeroing out effects of
all other variables. At present, only univariate and bivariate smooth plots are allowed, though note
that bivariate smooths rely on default behaviour from plot.gam. plot_mvgam_smooth generates
posterior predictions from an object of class mvgam, calculates posterior empirical quantiles and
plots them. If realisations = FALSE, the returned plot shows 90, 60, 40 and 20 percent posterior
quantiles (as ribbons of increasingly darker shades or red) as well as the posterior median (as a dark
red line). If realisations = FALSE, a set of n_realisations posterior draws are shown. For more
nuanced visualisation, supply newdata just as you would when predicting from a gam model or use
the more flexible conditional_effects.mvgam. Alternatively, if you prefer to use partial effect
plots in the style of gratia, and if you have the gratia package installed, you can use draw.mvgam.
See gratia_mvgam_enhancements for details.

Value

A base R graphics plot

94 plot_mvgam_trend

Author(s)

Nicholas J Clark

See Also

plot.gam, conditional_effects.mvgam, gratia_mvgam_enhancements

plot_mvgam_trend Plot mvgam latent trend for a specified series

Description

Plot mvgam latent trend for a specified series

Usage

plot_mvgam_trend(
object,
series = 1,
newdata,
data_test,
realisations = FALSE,
n_realisations = 15,
n_cores = 1,
derivatives = FALSE,
hide_xlabels = FALSE,
xlab,
ylab,
...

)

Arguments

object list object returned from mvgam. See mvgam()

series integer specifying which series in the set is to be plotted

newdata Optional dataframe or list of test data containing at least ’series’ and ’time’
in addition to any other variables included in the linear predictor of the original
formula.

data_test Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

realisations logical. If TRUE, posterior trend realisations are shown as a spaghetti plot,
making it easier to visualise the diversity of possible trend paths. If FALSE, the
default, empirical quantiles of the posterior distribution are shown

n_realisations integer specifying the number of posterior realisations to plot, if realisations
= TRUE. Ignored otherwise

plot_mvgam_uncertainty 95

n_cores integer specifying number of cores for generating trend forecasts in parallel

derivatives logical. If TRUE, an additional plot will be returned to show the estimated 1st
derivative for the estimated trend

hide_xlabels logical. If TRUE, no xlabels are printed to allow the user to add custom labels
using axis from base R. Ignored if derivatives = TRUE

xlab label for x axis.

ylab label for y axis.

... further par graphical parameters.

Value

A base R graphics plot

Examples

simdat <- sim_mvgam(n_series = 3, trend_model = 'AR1')
mod <- mvgam(y ~ s(season, bs = 'cc', k = 6),

trend_model = AR(),
noncentred = TRUE,
data = simdat$data_train,
chains = 2)

Plot estimated trends for some series
plot_mvgam_trend(mod)
plot_mvgam_trend(mod, series = 2)

Extrapolate trends forward in time and plot on response scale
plot_mvgam_trend(mod, newdata = simdat$data_test)
plot_mvgam_trend(mod, newdata = simdat$data_test, series = 2)

But it is recommended to compute extrapolations for all series
first and then plot
trend_fc <- forecast(mod, newdata = simdat$data_test)
plot(trend_fc, series = 1)
plot(trend_fc, series = 2)

plot_mvgam_uncertainty

Plot mvgam forecast uncertainty contributions for a specified series

Description

Plot mvgam forecast uncertainty contributions for a specified series

96 portal_data

Usage

plot_mvgam_uncertainty(
object,
series = 1,
newdata,
data_test,
legend_position = "topleft",
hide_xlabels = FALSE

)

Arguments

object list object returned from mvgam. See mvgam()

series integer specifying which series in the set is to be plotted

newdata A dataframe or list containing at least ’series’ and ’time’ for the forecast
horizon, in addition to any other variables included in the linear predictor of
formula

data_test Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

legend_position

The location may also be specified by setting x to a single keyword from the list:
"none", "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright",
"right" and "center". This places the legend on the inside of the plot frame at the
given location (if it is not "none").

hide_xlabels logical. If TRUE, no xlabels are printed to allow the user to add custom labels
using axis from base R

Value

A base R graphics plot

portal_data Portal Project rodent capture survey data

Description

A dataset containing timeseries of total captures (across all control plots) for select rodent species
from the Portal Project

Usage

portal_data

posterior_epred.mvgam 97

Format

A dataframe containing the following fields:

moon time of sampling in lunar cycles

DM Total captures of species Dipodomys merriami

DO Total captures of species Dipodomys ordii

PP Total captures of species Chaetodipus penicillatus

OT Total captures of species Onychomys torridus

year Sampling year

month Sampling month

mintemp Monthly mean minimum temperature

precipitation Monthly mean precipitation

ndvi Monthly mean Normalised Difference Vegetation Index

Source

https://github.com/weecology/PortalData/blob/main/SiteandMethods/Methods.md

posterior_epred.mvgam Draws from the Expected Value of the Posterior Predictive Distribu-
tion

Description

Compute posterior draws of the expected value of the posterior predictive distribution (i.e. the
conditional expectation). Can be performed for the data used to fit the model (posterior predictive
checks) or for new data. By definition, these predictions have smaller variance than the posterior
predictions performed by the posterior_predict.mvgam method. This is because only the un-
certainty in the expected value of the posterior predictive distribution is incorporated in the draws
computed by posterior_epred while the residual error is ignored there. However, the estimated
means of both methods averaged across draws should be very similar.

Usage

S3 method for class 'mvgam'
posterior_epred(
object,
newdata,
data_test,
ndraws = NULL,
process_error = TRUE,
...

)

https://github.com/weecology/PortalData/blob/main/SiteandMethods/Methods.md

98 posterior_epred.mvgam

Arguments

object list object returned from mvgam. See mvgam()

newdata Optional dataframe or list of test data containing the variables included in the
linear predictor of formula. If not supplied, predictions are generated for the
original observations used for the model fit.

data_test Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

ndraws Positive integer indicating how many posterior draws should be used. If NULL
(the default) all draws are used.

process_error Logical. If TRUE and newdata is supplied, expected uncertainty in the process
model is accounted for by using draws from any latent trend SD parameters. If
FALSE, uncertainty in the latent trend component is ignored when calculating
predictions. If no newdata is supplied, draws from the fitted model’s posterior
predictive distribution will be used (which will always include uncertainty in
any latent trend components)

... Ignored

Details

Note that for all types of predictions for models that did not include a trend_formula, uncertainty
in the dynamic trend component can be ignored by setting process_error = FALSE. However, if
a trend_formula was supplied in the model, predictions for this component cannot be ignored.
If process_error = TRUE, trend predictions will ignore autocorrelation coefficients or GP length
scale coefficients, ultimately assuming the process is stationary. This method is similar to the types
of posterior predictions returned from brms models when using autocorrelated error predictions for
newdata. This function is therefore more suited to posterior simulation from the GAM components
of a mvgam model, while the forecasting functions plot_mvgam_fc and forecast.mvgam are better
suited to generate h-step ahead forecasts that respect the temporal dynamics of estimated latent
trends.

Value

A matrix of dimension n_samples x new_obs, where n_samples is the number of posterior sam-
ples from the fitted object and n_obs is the number of observations in newdata

See Also

hindcast.mvgam posterior_linpred.mvgam posterior_predict.mvgam

Examples

Simulate some data and fit a model
simdat <- sim_mvgam(n_series = 1, trend_model = 'AR1')
mod <- mvgam(y ~ s(season, bs = 'cc'),

trend_model = AR(),
noncentred = TRUE,
data = simdat$data_train)

posterior_linpred.mvgam 99

Compute posterior expectations
expectations <- posterior_epred(mod)
str(expectations)

posterior_linpred.mvgam

Posterior Draws of the Linear Predictor

Description

Compute posterior draws of the linear predictor, that is draws before applying any link functions
or other transformations. Can be performed for the data used to fit the model (posterior predictive
checks) or for new data.

Usage

S3 method for class 'mvgam'
posterior_linpred(
object,
transform = FALSE,
newdata,
ndraws = NULL,
data_test,
process_error = TRUE,
...

)

Arguments

object list object returned from mvgam. See mvgam()

transform Logical; if FALSE (the default), draws of the linear predictor are returned. If
TRUE, draws of the transformed linear predictor, i.e. the conditional expectation,
are returned.

newdata Optional dataframe or list of test data containing the variables included in the
linear predictor of formula. If not supplied, predictions are generated for the
original observations used for the model fit.

ndraws Positive integer indicating how many posterior draws should be used. If NULL
(the default) all draws are used.

data_test Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

process_error Logical. If TRUE and newdata is supplied, expected uncertainty in the process
model is accounted for by using draws from any latent trend SD parameters. If
FALSE, uncertainty in the latent trend component is ignored when calculating
predictions. If no newdata is supplied, draws from the fitted model’s posterior
predictive distribution will be used (which will always include uncertainty in
any latent trend components)

... Ignored

100 posterior_predict.mvgam

Details

Note that for all types of predictions for models that did not include a trend_formula, uncertainty
in the dynamic trend component can be ignored by setting process_error = FALSE. However, if
a trend_formula was supplied in the model, predictions for this component cannot be ignored.
If process_error = TRUE, trend predictions will ignore autocorrelation coefficients or GP length
scale coefficients, ultimately assuming the process is stationary. This method is similar to the types
of posterior predictions returned from brms models when using autocorrelated error predictions for
newdata. This function is therefore more suited to posterior simulation from the GAM components
of a mvgam model, while the forecasting functions plot_mvgam_fc and forecast.mvgam are better
suited to generate h-step ahead forecasts that respect the temporal dynamics of estimated latent
trends.

Value

A matrix of dimension n_samples x new_obs, where n_samples is the number of posterior sam-
ples from the fitted object and n_obs is the number of observations in newdata

See Also

posterior_epred.mvgam posterior_predict.mvgam

hindcast.mvgam posterior_epred.mvgam posterior_predict.mvgam

Examples

Simulate some data and fit a model
simdat <- sim_mvgam(n_series = 1, trend_model = 'AR1')
mod <- mvgam(y ~ s(season, bs = 'cc'),

trend_model = AR(),
noncentred = TRUE,
data = simdat$data_train,
chains = 2)

Extract linear predictor values
linpreds <- posterior_linpred(mod)
str(linpreds)

posterior_predict.mvgam

Draws from the Posterior Predictive Distribution

Description

Compute posterior draws of the posterior predictive distribution. Can be performed for the data
used to fit the model (posterior predictive checks) or for new data. By definition, these draws have
higher variance than draws of the expected value of the posterior predictive distribution computed by
posterior_epred.mvgam. This is because the residual error is incorporated in posterior_predict.
However, the estimated means of both methods averaged across draws should be very similar.

posterior_predict.mvgam 101

Usage

S3 method for class 'mvgam'
posterior_predict(
object,
newdata,
data_test,
ndraws = NULL,
process_error = TRUE,
...

)

Arguments

object list object returned from mvgam. See mvgam()

newdata Optional dataframe or list of test data containing the variables included in the
linear predictor of formula. If not supplied, predictions are generated for the
original observations used for the model fit.

data_test Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

ndraws Positive integer indicating how many posterior draws should be used. If NULL
(the default) all draws are used.

process_error Logical. If TRUE and newdata is supplied, expected uncertainty in the process
model is accounted for by using draws from any latent trend SD parameters. If
FALSE, uncertainty in the latent trend component is ignored when calculating
predictions. If no newdata is supplied, draws from the fitted model’s posterior
predictive distribution will be used (which will always include uncertainty in
any latent trend components)

... Ignored

Details

Note that for all types of predictions for models that did not include a trend_formula, uncertainty
in the dynamic trend component can be ignored by setting process_error = FALSE. However, if
a trend_formula was supplied in the model, predictions for this component cannot be ignored.
If process_error = TRUE, trend predictions will ignore autocorrelation coefficients or GP length
scale coefficients, ultimately assuming the process is stationary. This method is similar to the types
of posterior predictions returned from brms models when using autocorrelated error predictions for
newdata. This function is therefore more suited to posterior simulation from the GAM components
of a mvgam model, while the forecasting functions plot_mvgam_fc and forecast.mvgam are better
suited to generate h-step ahead forecasts that respect the temporal dynamics of estimated latent
trends.

Value

A matrix of dimension n_samples x new_obs, where n_samples is the number of posterior sam-
ples from the fitted object and n_obs is the number of observations in newdata

102 ppc.mvgam

See Also

hindcast.mvgam posterior_linpred.mvgam posterior_epred.mvgam

Examples

Not run:
Simulate some data and fit a model
simdat <- sim_mvgam(n_series = 1, trend_model = 'AR1')
mod <- mvgam(y ~ s(season, bs = 'cc'),

trend_model = 'AR1',
data = simdat$data_train)

Compute posterior predictions
predictions <- posterior_predict(mod)
str(predictions)

End(Not run)

ppc.mvgam Plot mvgam posterior predictive checks for a specified series

Description

Plot mvgam posterior predictive checks for a specified series

Usage

ppc(object, ...)

S3 method for class 'mvgam'
ppc(
object,
newdata,
data_test,
series = 1,
type = "hist",
n_bins,
legend_position,
xlab,
ylab,
...

)

Arguments

object list object returned from mvgam. See mvgam()

... further par graphical parameters.

ppc.mvgam 103

newdata Optional dataframe or list of test data containing at least ’series’ and ’time’
for the forecast horizon, in addition to any other variables included in the lin-
ear predictor of formula. If included, the observed values in the test data are
compared to the model’s forecast distribution for exploring biases in model pre-
dictions. Note this is only useful if the same newdata was also included when
fitting the original model.

data_test Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

series integer specifying which series in the set is to be plotted

type character specifying the type of posterior predictive check to calculate and
plot. Valid options are: ’rootogram’, ’mean’, ’hist’, ’density’, ’prop_zero’, ’pit’
and ’cdf’

n_bins integer specifying the number of bins to use for binning observed values when
plotting a rootogram or histogram. Default is 50 bins for a rootogram, which
means that if there are >50 unique observed values, bins will be used to prevent
overplotting and facilitate interpretation. Default for a histogram is to use the
number of bins returned by a call to hist in base R

legend_position

The location may also be specified by setting x to a single keyword from the list
"bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right"
and "center". This places the legend on the inside of the plot frame at the given
location. Or alternatively, use "none" to hide the legend.

xlab label for x axis.

ylab label for y axis.

Details

Posterior predictions are drawn from the fitted mvgam and compared against the empirical distri-
bution of the observed data for a specified series to help evaluate the model’s ability to generate
unbiased predictions. For all plots apart from type = 'rootogram', posterior predictions can also
be compared to out of sample observations as long as these observations were included as ’data_test’
in the original model fit and supplied here. Rootograms are currently only plotted using the ’hang-
ing’ style.
Note that the predictions used for these plots are those that have been generated directly within the
mvgam() model, so they can be misleading if the model included flexible dynamic trend compo-
nents. For a broader range of posterior checks that are created using "new data" predictions, see
pp_check.mvgam

Value

A base R graphics plot showing either a posterior rootogram (for type == 'rootogram'), the pre-
dicted vs observed mean for the series (for type == 'mean'), predicted vs observed proportion of
zeroes for the series (for type == 'prop_zero'),predicted vs observed histogram for the series (for
type == 'hist'), kernel density or empirical CDF estimates for posterior predictions (for type ==
'density' or type == 'cdf') or a Probability Integral Transform histogram (for type == 'pit').

104 pp_check.mvgam

Author(s)

Nicholas J Clark

See Also

pp_check.mvgam, predict.mvgam

Examples

Simulate some smooth effects and fit a model
set.seed(0)
dat <- mgcv::gamSim(1, n = 200, scale = 2)
mod <- mvgam(y ~ s(x0) + s(x1) + s(x2) + s(x3),

data = dat,
family = gaussian(),
chains = 2)

Posterior checks
ppc(mod, type = 'hist')
ppc(mod, type = 'density')
ppc(mod, type = 'cdf')

Many more options are available with pp_check()
pp_check(mod)
pp_check(mod, type = "ecdf_overlay")
pp_check(mod, type = 'freqpoly')

pp_check.mvgam Posterior Predictive Checks for mvgam Objects

Description

Perform posterior predictive checks with the help of the bayesplot package.

Usage

S3 method for class 'mvgam'
pp_check(
object,
type,
ndraws = NULL,
prefix = c("ppc", "ppd"),
group = NULL,
x = NULL,
newdata = NULL,
...

)

pp_check.mvgam 105

Arguments

object An object of class mvgam.

type Type of the ppc plot as given by a character string. See PPC for an overview of
currently supported types. You may also use an invalid type (e.g. type = "xyz")
to get a list of supported types in the resulting error message.

ndraws Positive integer indicating how many posterior draws should be used. If NULL
all draws are used. If not specified, the number of posterior draws is chosen
automatically. Ignored if draw_ids is not NULL.

prefix The prefix of the bayesplot function to be applied. Either ‘"ppc"‘ (posterior
predictive check; the default) or ‘"ppd"‘ (posterior predictive distribution), the
latter being the same as the former except that the observed data is not shown
for ‘"ppd"‘.

group Optional name of a factor variable in the model by which to stratify the ppc plot.
This argument is required for ppc *_grouped types and ignored otherwise.

x Optional name of a variable in the model. Only used for ppc types having an x
argument and ignored otherwise.

newdata Optional dataframe or list of test data containing the variables included in the
linear predictor of formula. If not supplied, predictions are generated for the
original observations used for the model fit.

... Further arguments passed to predict.mvgam as well as to the PPC function
specified in type.

Details

For a detailed explanation of each of the ppc functions, see the PPC documentation of the bayesplot
package.

Value

A ggplot object that can be further customized using the ggplot2 package.

Author(s)

Nicholas J Clark

See Also

ppc predict.mvgam

Examples

Not run:
simdat <- sim_mvgam(seasonality = 'hierarchical')
mod <- mvgam(y ~ series +

s(season, bs = 'cc', k = 6) +
s(season, series, bs = 'fs', k = 4),

data = simdat$data_train,

106 predict.mvgam

burnin = 300,
samples = 300)

Use pp_check(mod, type = "xyz") for a list of available plot types

Default is a density overlay for all observations
pp_check(mod)

Rootograms particularly useful for count data
pp_check(mod, type = "rootogram")

Grouping plots by series is useful
pp_check(mod, type = "bars_grouped",

group = "series", ndraws = 50)
pp_check(mod, type = "ecdf_overlay_grouped",

group = "series", ndraws = 50)
pp_check(mod, type = "stat_freqpoly_grouped",

group = "series", ndraws = 50)

Custom functions accepted
prop_zero <- function(x) mean(x == 0)
pp_check(mod, type = "stat", stat = "prop_zero")
pp_check(mod, type = "stat_grouped",

stat = "prop_zero",
group = "series")

Some functions accept covariates to set the x-axes
pp_check(mod, x = "season",

type = "ribbon_grouped",
prob = 0.5,
prob_outer = 0.8,
group = "series")

Many plots can be made without the observed data
pp_check(mod, prefix = "ppd")

End(Not run)

predict.mvgam Predict from the GAM component of an mvgam model

Description

Predict from the GAM component of an mvgam model

Usage

S3 method for class 'mvgam'
predict(

predict.mvgam 107

object,
newdata,
data_test,
type = "link",
process_error = TRUE,
summary = TRUE,
robust = FALSE,
probs = c(0.025, 0.975),
...

)

Arguments

object list object returned from mvgam. See mvgam()

newdata Optional dataframe or list of test data containing the variables included in the
linear predictor of formula. If not supplied, predictions are generated for the
original observations used for the model fit.

data_test Deprecated. Still works in place of newdata but users are recommended to use
newdata instead for more seamless integration into R workflows

type When this has the value link (default) the linear predictor is calculated on the
link scale. If expected is used, predictions reflect the expectation of the re-
sponse (the mean) but ignore uncertainty in the observation process. When
response is used, the predictions take uncertainty in the observation process
into account to return predictions on the outcome scale. When variance is
used, the variance of the response with respect to the mean (mean-variance re-
lationship) is returned. When type = "terms", each component of the linear
predictor is returned separately in the form of a list (possibly with standard er-
rors, if summary = TRUE): this includes parametric model components, followed
by each smooth component, but excludes any offset and any intercept. Two
special cases are also allowed: type latent_N will return the estimated latent
abundances from an N-mixture distribution, while type detection will return
the estimated detection probability from an N-mixture distribution

process_error Logical. If TRUE and a dynamic trend model was fit, expected uncertainty in
the process model is accounted for by using draws from the latent trend SD
parameters. If FALSE, uncertainty in the latent trend component is ignored when
calculating predictions

summary Should summary statistics be returned instead of the raw values? Default is
TRUE..

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

... Ignored

108 predict.mvgam

Details

Note that for all types of predictions for models that did not include a trend_formula, uncertainty
in the dynamic trend component can be ignored by setting process_error = FALSE. However, if
a trend_formula was supplied in the model, predictions for this component cannot be ignored.
If process_error = TRUE, trend predictions will ignore autocorrelation coefficients or GP length
scale coefficients, ultimately assuming the process is stationary. This method is similar to the types
of posterior predictions returned from brms models when using autocorrelated error predictions for
newdata. This function is therefore more suited to posterior simulation from the GAM components
of a mvgam model, while the forecasting functions plot_mvgam_fc and forecast.mvgam are better
suited to generate h-step ahead forecasts that respect the temporal dynamics of estimated latent
trends.

Value

Predicted values on the appropriate scale. If summary = FALSE and type != "terms", the output is
a matrix of dimension n_draw x n_observations containing predicted values for each posterior
draw in object.

If summary = TRUE and type != "terms", the output is an n_observations x E matrix. The num-
ber of summary statistics E is equal to 2 + length(probs): The Estimate column contains point
estimates (either mean or median depending on argument robust), while the Est.Error column
contains uncertainty estimates (either standard deviation or median absolute deviation depending on
argument robust). The remaining columns starting with Q contain quantile estimates as specified
via argument probs.

If type = "terms" and summary = FALSE, the output is a named list containing a separate slot for
each effect, with the effects returned as matrices of dimension n_draw x 1. If summary = TRUE,
the output resembles that from predict.gam when using the call predict.gam(object, type =
"terms", se.fit = TRUE), where mean contributions from each effect are returned in matrix form
while standard errors (representing the interval: (max(probs) - min(probs)) / 2) are returned in
a separate matrix

Examples

Simulate 4 time series with hierarchical seasonality
and independent AR1 dynamic processes
set.seed(111)
simdat <- sim_mvgam(seasonality = 'hierarchical',

trend_model = 'AR1',
family = gaussian())

Fit a model with shared seasonality
mod1 <- mvgam(y ~ s(season, bs = 'cc', k = 6),

data = simdat$data_train,
family = gaussian(),
trend_model = AR(),
noncentred = TRUE,
chains = 2)

Generate predictions against observed data
preds <- predict(mod1, summary = TRUE)

print.mvgam 109

head(preds)

Generate predictions against test data
preds <- predict(mod1, newdata = simdat$data_test, summary = TRUE)
head(preds)

print.mvgam Summary for a fitted mvgam object

Description

This function takes a fitted mvgam object and prints a quick summary

Usage

S3 method for class 'mvgam'
print(x, ...)

Arguments

x list object returned from mvgam

... Ignored

Details

A brief summary of the model’s call is printed

Value

A list is printed on-screen

Author(s)

Nicholas J Clark

110 PW

PW Specify piecewise linear or logistic trends

Description

Set up piecewise linear or logistic trend models in mvgam. These functions do not evaluate their
arguments – they exist purely to help set up a model with particular piecewise trend models.

Usage

PW(
n_changepoints = 10,
changepoint_range = 0.8,
changepoint_scale = 0.05,
growth = "linear"

)

Arguments

n_changepoints A non-negative integer specifying the number of potential changepoints. Po-
tential changepoints are selected uniformly from the first changepoint_range
proportion of timepoints in data. Default is 10

changepoint_range

Proportion of history in data in which trend changepoints will be estimated.
Defaults to 0.8 for the first 80%.

changepoint_scale

Parameter modulating the flexibility of the automatic changepoint selection by
altering the scale parameter of a Laplace distribution. The resulting prior will
be double_exponential(0, changepoint_scale). Large values will allow
many changepoints and a more flexible trend, while small values will allow few
changepoints. Default is 0.05.

growth Character string specifying either ’linear’ or ’logistic’ growth of the trend. If
’logistic’, a variable labelled cap MUST be in data to specify the maximum
saturation point for the trend (see details and examples in mvgam for more infor-
mation). Default is ’linear’.

Details

Offsets and intercepts: For each of these trend models, an offset parameter is included in the trend
estimation process. This parameter will be incredibly difficult to identify if you also include an
intercept in the observation formula. For that reason, it is highly recommended that you drop the
intercept from the formula (i.e. y ~ x + 0 or y ~ x - 1, where x are your optional predictor terms).

Logistic growth and the cap variable: When forecasting growth, there is often some maximum
achievable point that a time series can reach. For example, total market size, total population size
or carrying capacity in population dynamics. It can be advantageous for the forecast to saturate at
or near this point so that predictions are more sensible. This function allows you to make forecasts

PW 111

using a logistic growth trend model, with a specified carrying capacity. Note that this capacity
does not need to be static over time, it can vary with each series x timepoint combination if nec-
essary. But you must supply a cap value for each observation in the data when using growth =
'logistic'. For observation families that use a non-identity link function, the cap value will be
internally transformed to the link scale (i.e. your specified cap will be log transformed if you are
using a poisson() or nb() family). It is therefore important that you specify the cap values on the
scale of your outcome. Note also that no missing values are allowed in cap.

Value

An object of class mvgam_trend, which contains a list of arguments to be interpreted by the parsing
functions in mvgam

References

Taylor, Sean J., and Benjamin Letham. "Forecasting at scale." The American Statistician 72.1
(2018): 37-45.

Examples

Example of logistic growth with possible changepoints
Simple logistic growth model
dNt = function(r, N, k){

r * N * (k - N)
}

Iterate growth through time
Nt = function(r, N, t, k) {
for (i in 1:(t - 1)) {

population at next time step is current population + growth,
but we introduce several 'shocks' as changepoints
if(i %in% c(5, 15, 25, 41, 45, 60, 80)){

N[i + 1] <- max(1, N[i] + dNt(r + runif(1, -0.1, 0.1),
N[i], k))

} else {
N[i + 1] <- max(1, N[i] + dNt(r, N[i], k))
}
}
N

}

Simulate expected values
set.seed(11)
expected <- Nt(0.004, 2, 100, 30)
plot(expected, xlab = 'Time')

Take Poisson draws
y <- rpois(100, expected)
plot(y, xlab = 'Time')

Assemble data into dataframe and model. We set a

112 residuals.mvgam

fixed carrying capacity of 35 for this example, but note that
this value is not required to be fixed at each timepoint
mod_data <- data.frame(y = y,

time = 1:100,
cap = 35,
series = as.factor('series_1'))

plot_mvgam_series(data = mod_data)

The intercept is nonidentifiable when using piecewise
trends because the trend functions have their own offset
parameters 'm'; it is recommended to always drop intercepts
when using these trend models
mod <- mvgam(y ~ 0,

trend_model = PW(growth = 'logistic'),
family = poisson(),
data = mod_data,
chains = 2)

summary(mod)

Plot the posterior hindcast
plot(mod, type = 'forecast')

View the changepoints with ggplot2 utilities
library(ggplot2)
mcmc_plot(mod, variable = 'delta_trend',

regex = TRUE) +
scale_y_discrete(labels = mod$trend_model$changepoints) +
labs(y = 'Potential changepoint',

x = 'Rate change')

residuals.mvgam Posterior draws of mvgam residuals

Description

This method extracts posterior draws of Dunn-Smyth (randomized quantile) residuals in the or-
der in which the data were supplied to the model. It included additional arguments for obtaining
summaries of the computed residuals

Usage

S3 method for class 'mvgam'
residuals(object, summary = TRUE, robust = FALSE, probs = c(0.025, 0.975), ...)

Arguments

object An object of class mvgam

summary Should summary statistics be returned instead of the raw values? Default is
TRUE..

RW 113

robust If FALSE (the default) the mean is used as the measure of central tendency and
the standard deviation as the measure of variability. If TRUE, the median and the
median absolute deviation (MAD) are applied instead. Only used if summary is
TRUE.

probs The percentiles to be computed by the quantile function. Only used if summary
is TRUE.

... Further arguments passed to prepare_predictions that control several aspects
of data validation and prediction.

Details

This method gives residuals as Dunn-Smyth (randomized quantile) residuals. Any observations that
were missing (i.e. NA) in the original data will have missing values in the residuals

Value

An array of randomized quantile residual values. If summary = FALSE the output resembles those
of posterior_epred.mvgam and predict.mvgam.

If summary = TRUE the output is an n_observations x E matrix. The number of summary statistics
E is equal to 2 + length(probs): The Estimate column contains point estimates (either mean or
median depending on argument robust), while the Est.Error column contains uncertainty esti-
mates (either standard deviation or median absolute deviation depending on argument robust). The
remaining columns starting with Q contain quantile estimates as specified via argument probs.

Examples

Simulate some data and fit a model
simdat <- sim_mvgam(n_series = 1, trend_model = 'AR1')
mod <- mvgam(y ~ s(season, bs = 'cc'),

trend_model = AR(),
noncentred = TRUE,
data = simdat$data_train,
chains = 2)

Extract posterior residuals
resids <- residuals(mod)
str(resids)

RW Specify autoregressive dynamic processes

Description

Set up autoregressive or autoregressive moving average trend models in mvgam. These functions do
not evaluate their arguments – they exist purely to help set up a model with particular autoregressive
trend models.

114 RW

Usage

RW(ma = FALSE, cor = FALSE)

AR(p = 1, ma = FALSE, cor = FALSE)

CAR(p = 1)

VAR(ma = FALSE, cor = FALSE)

Arguments

ma Logical Include moving average terms of order 1? Default is FALSE.

cor Logical Include correlated process errors as part of a multivariate normal pro-
cess model? If TRUE and if n_series > 1 in the supplied data, a fully structured
covariance matrix will be estimated for the process errors. Default is FALSE.

p A non-negative integer specifying the autoregressive (AR) order. Default is 1.
Cannot currently be larger than 3 for AR terms, and cannot be anything other
than 1 for continuous time AR (CAR) terms

Value

An object of class mvgam_trend, which contains a list of arguments to be interpreted by the parsing
functions in mvgam

Examples

Not run:
A short example to illustrate CAR(1) models
Function to simulate CAR1 data with seasonality
sim_corcar1 = function(n = 120,

phi = 0.5,
sigma = 1,
sigma_obs = 0.75){

Sample irregularly spaced time intervals
time_dis <- c(0, runif(n - 1, -0.1, 1))
time_dis[time_dis < 0] <- 0; time_dis <- time_dis * 5

Set up the latent dynamic process
x <- vector(length = n); x[1] <- -0.3
for(i in 2:n){
zero-distances will cause problems in sampling, so mvgam uses a
minimum threshold; this simulation function emulates that process
if(time_dis[i] == 0){

x[i] <- rnorm(1, mean = (phi ^ 1e-12) * x[i - 1], sd = sigma)
} else {

x[i] <- rnorm(1, mean = (phi ^ time_dis[i]) * x[i - 1], sd = sigma)
}

}

Add 12-month seasonality

score.mvgam_forecast 115

cov1 <- sin(2 * pi * (1 : n) / 12); cov2 <- cos(2 * pi * (1 : n) / 12)
beta1 <- runif(1, 0.3, 0.7); beta2 <- runif(1, 0.2, 0.5)
seasonality <- beta1 * cov1 + beta2 * cov2

Take Gaussian observations with error and return
data.frame(y = rnorm(n, mean = x + seasonality, sd = sigma_obs),

season = rep(1:12, 20)[1:n],
time = cumsum(time_dis))

}

Sample two time series
dat <- rbind(dplyr::bind_cols(sim_corcar1(phi = 0.65,

sigma_obs = 0.55),
data.frame(series = 'series1')),

dplyr::bind_cols(sim_corcar1(phi = 0.8,
sigma_obs = 0.35),
data.frame(series = 'series2'))) %>%

dplyr::mutate(series = as.factor(series))

mvgam with CAR(1) trends and series-level seasonal smooths; the
State-Space representation (using trend_formula) will be more efficient
mod <- mvgam(formula = y ~ 1,

trend_formula = ~ s(season, bs = 'cc',
k = 5, by = trend),

trend_model = CAR(),
data = dat,
family = gaussian(),
samples = 300,
chains = 2)

View usual summaries and plots
summary(mod)
conditional_effects(mod, type = 'expected')
plot(mod, type = 'trend', series = 1)
plot(mod, type = 'trend', series = 2)
plot(mod, type = 'residuals', series = 1)
plot(mod, type = 'residuals', series = 2)

End(Not run)

score.mvgam_forecast Compute probabilistic forecast scores for mvgam objects

Description

Compute probabilistic forecast scores for mvgam objects

Usage

S3 method for class 'mvgam_forecast'

116 score.mvgam_forecast

score(
object,
score = "crps",
log = FALSE,
weights,
interval_width = 0.9,
n_cores = 1,
...

)

score(object, ...)

Arguments

object mvgam_forecast object. See forecast.mvgam().

score character specifying the type of proper scoring rule to use for evaluation. Op-
tions are: sis (i.e. the Scaled Interval Score), energy, variogram, elpd (i.e.
the Expected log pointwise Predictive Density), drps (i.e. the Discrete Rank
Probability Score) or crps (the Continuous Rank Probability Score). Note that
when choosing elpd, the supplied object must have forecasts on the link scale
so that expectations can be calculated prior to scoring. For all other scores,
forecasts should be supplied on the response scale (i.e. posterior predictions)

log logical. Should the forecasts and truths be logged prior to scoring? This is
often appropriate for comparing performance of models when series vary in
their observation ranges

weights optional vector of weights (where length(weights) == n_series) for weight-
ing pairwise correlations when evaluating the variogram score for multivariate
forecasts. Useful for down-weighting series that have larger magnitude ob-
servations or that are of less interest when forecasting. Ignored if score !=
'variogram'

interval_width proportional value on [0.05,0.95] defining the forecast interval for calculating
coverage and, if score = 'sis', for calculating the interval score

n_cores integer specifying number of cores for calculating scores in parallel

... Ignored

Value

a list containing scores and interval coverages per forecast horizon. If score %in% c('drps',
'crps', 'elpd'), the list will also contain return the sum of all series-level scores per horizon. If
score %in% c('energy','variogram'), no series-level scores are computed and the only score
returned will be for all series. For all scores apart from elpd, the in_interval column in each
series-level slot is a binary indicator of whether or not the true value was within the forecast’s
corresponding posterior empirical quantiles. Intervals are not calculated when using elpd because
forecasts will only contain the linear predictors

See Also

forecast.mvgam, ensemble

series_to_mvgam 117

Examples

Simulate observations for three count-valued time series
data <- sim_mvgam()
Fit a dynamic model using 'newdata' to automatically produce forecasts
mod <- mvgam(y ~ 1,

trend_model = RW(),
data = data$data_train,
newdata = data$data_test,
chains = 2)

Extract forecasts into a 'mvgam_forecast' object
fc <- forecast(mod)

Compute Discrete Rank Probability Scores and 0.90 interval coverages
fc_scores <- score(fc, score = 'drps')
str(fc_scores)

series_to_mvgam This function converts univariate or multivariate time series (xts or
ts objects) to the format necessary for mvgam

Description

This function converts univariate or multivariate time series (xts or ts objects) to the format nec-
essary for mvgam

Usage

series_to_mvgam(series, freq, train_prop = 0.85)

Arguments

series xts or ts object to be converted to mvgam format

freq integer. The seasonal frequency of the series

train_prop numeric stating the proportion of data to use for training. Should be between
0.25 and 0.95

Value

A list object containing outputs needed for mvgam, including ’data_train’ and ’data_test’

118 sim_mvgam

Examples

A ts object example
data("sunspots")
series <- cbind(sunspots, sunspots)
colnames(series) <- c('blood', 'bone')
head(series)
series_to_mvgam(series, frequency(series), 0.85)

An xts object example
library(xts)
dates <- seq(as.Date("2001-05-01"), length=30, by="quarter")
data <- cbind(c(gas = rpois(30, cumprod(1+rnorm(30, mean = 0.01, sd = 0.001)))),
c(oil = rpois(30, cumprod(1+rnorm(30, mean = 0.01, sd = 0.001)))))
series <- xts(x = data, order.by = dates)
colnames(series) <- c('gas', 'oil')
head(series)
series_to_mvgam(series, freq = 4, train_prop = 0.85)

sim_mvgam Simulate a set of time series for mvgam modelling

Description

This function simulates sets of time series data for fitting a multivariate GAM that includes shared
seasonality and dependence on state-space latent dynamic factors. Random dependencies among
series, i.e. correlations in their long-term trends, are included in the form of correlated loadings on
the latent dynamic factors

Usage

sim_mvgam(
T = 100,
n_series = 3,
seasonality = "shared",
use_lv = FALSE,
n_lv = 0,
trend_model = "RW",
drift = FALSE,
prop_trend = 0.2,
trend_rel,
freq = 12,
family = poisson(),
phi,
shape,
sigma,
nu,
mu,

sim_mvgam 119

prop_missing = 0,
prop_train = 0.85

)

Arguments

T integer. Number of observations (timepoints)

n_series integer. Number of discrete time series

seasonality character. Either shared, meaning that all series share the exact same seasonal
pattern, or hierarchical, meaning that there is a global seasonality but each
series’ pattern can deviate slightly

use_lv logical. If TRUE, use dynamic factors to estimate series’ latent trends in a
reduced dimension format. If FALSE, estimate independent latent trends for each
series

n_lv integer. Number of latent dynamic factors for generating the series’ trends.
Defaults to 0, meaning that dynamics are estimated independently for each series

trend_model character specifying the time series dynamics for the latent trend. Options are:

• None (no latent trend component; i.e. the GAM component is all that
contributes to the linear predictor, and the observation process is the only
source of error; similarly to what is estimated by gam)

• RW (random walk with possible drift)
• AR1 (with possible drift)
• AR2 (with possible drift)
• AR3 (with possible drift)
• VAR1 (contemporaneously uncorrelated VAR1)
• VAR1cor (contemporaneously correlated VAR1)
• GP (Gaussian Process with squared exponential kernel)

See mvgam_trends for more details

drift logical, simulate a drift term for each trend

prop_trend numeric. Relative importance of the trend for each series. Should be between 0
and 1

trend_rel Deprecated. Use prop_trend instead

freq integer. The seasonal frequency of the series

family family specifying the exponential observation family for the series. Currently
supported families are: nb(), poisson(), bernoulli(), tweedie(), gaussian(),
betar(), lognormal(), student() and Gamma()

phi vector of dispersion parameters for the series (i.e. size for nb() or phi for
betar()). If length(phi) < n_series, the first element of phi will be repli-
cated n_series times. Defaults to 5 for nb() and tweedie(); 10 for betar()

shape vector of shape parameters for the series (i.e. shape for gamma()) If length(shape)
< n_series, the first element of shape will be replicated n_series times. De-
faults to 10

120 summary.mvgam

sigma vector of scale parameters for the series (i.e. sd for gaussian() or student(),
log(sd) for lognormal()). If length(sigma) < n_series, the first element of
sigma will be replicated n_series times. Defaults to 0.5 for gaussian() and
student(); 0.2 for lognormal()

nu vector of degrees of freedom parameters for the series (i.e. nu for student())
If length(nu) < n_series, the first element of nu will be replicated n_series
times. Defaults to 3

mu vector of location parameters for the series. If length(mu) < n_series, the
first element of mu will be replicated n_series times. Defaults to small random
values between -0.5 and 0.5 on the link scale

prop_missing numeric stating proportion of observations that are missing. Should be between
0 and 0.8, inclusive

prop_train numeric stating the proportion of data to use for training. Should be between
0.2 and 1

Value

A list object containing outputs needed for mvgam, including ’data_train’ and ’data_test’, as well
as some additional information about the simulated seasonality and trend dependencies

Examples

Simulate series with observations bounded at 0 and 1 (Beta responses)
sim_data <- sim_mvgam(family = betar(), trend_model = RW(), prop_trend = 0.6)
plot_mvgam_series(data = sim_data$data_train, series = 'all')

Now simulate series with overdispersed discrete observations
sim_data <- sim_mvgam(family = nb(), trend_model = RW(), prop_trend = 0.6, phi = 10)
plot_mvgam_series(data = sim_data$data_train, series = 'all')

summary.mvgam Summary for a fitted mvgam object

Description

These functions take a fitted mvgam object and return various useful summaries

Usage

S3 method for class 'mvgam'
summary(object, include_betas = TRUE, smooth_test = TRUE, digits = 2, ...)

S3 method for class 'mvgam_prefit'
summary(object, ...)

S3 method for class 'mvgam'
coef(object, summarise = TRUE, ...)

update.mvgam 121

Arguments

object list object returned from mvgam

include_betas Logical. Print a summary that includes posterior summaries of all linear pre-
dictor beta coefficients (including spline coefficients)? Defaults to TRUE but use
FALSE for a more concise summary

smooth_test Logical. Compute estimated degrees of freedom and approximate p-values for
smooth terms? Defaults to TRUE, but users may wish to set to FALSE for complex
models with many smooth or random effect terms

digits The number of significant digits for printing out the summary; defaults to 2.

... Ignored

summarise logical. Summaries of coefficients will be returned if TRUE. Otherwise the full
posterior distribution will be returned

Details

summary.mvgam and summary.mvgam_prefit return brief summaries of the model’s call, along
with posterior intervals for some of the key parameters in the model. Note that some smooths have
extra penalties on the null space, so summaries for the rho parameters may include more penalty
terms than the number of smooths in the original model formula. Approximate p-values for smooth
terms are also returned, with methods used for their calculation following those used for mgcv
equivalents (see summary.gam for details). The Estimated Degrees of Freedom (edf) for smooth
terms is computed using either edf.type = 1 for models with no trend component, or edf.type =
0 for models with trend components. These are described in the documentation for jagam. Exper-
iments suggest these p-values tend to be more conservative than those that might be returned from
an equivalent model fit with summary.gam using method = 'REML'

coef.mvgam returns either summaries or full posterior estimates for GAM component coefficients

Value

For summary.mvgam and summary.mvgam_prefit, a list is printed on-screen showing the sum-
maries for the model

For coef.mvgam, either a matrix of posterior coefficient distributions (if summarise == FALSE or
data.frame of coefficient summaries)

Author(s)

Nicholas J Clark

update.mvgam Update an existing mvgam object

Description

This function allows a previously fitted mvgam model to be updated

122 update.mvgam

Usage

S3 method for class 'mvgam'
update(
object,
formula,
trend_formula,
data,
newdata,
trend_model,
trend_map,
use_lv,
n_lv,
family,
share_obs_params,
priors,
chains,
burnin,
samples,
threads,
algorithm,
lfo = FALSE,
...

)

Arguments

object list object returned from mvgam. See mvgam()

formula Optional new formula object. Note, mvgam currently does not support dynamic
formula updates such as removal of specific terms with - term. When updating,
the entire formula needs to be supplied

trend_formula An optional character string specifying the GAM process model formula. If
supplied, a linear predictor will be modelled for the latent trends to capture pro-
cess model evolution separately from the observation model. Should not have
a response variable specified on the left-hand side of the formula (i.e. a valid
option would be ~ season + s(year)). Also note that you should not use the
identifier series in this formula to specify effects that vary across time se-
ries. Instead you should use trend. This will ensure that models in which a
trend_map is supplied will still work consistently (i.e. by allowing effects to
vary across process models, even when some time series share the same under-
lying process model). This feature is only currently available for RW(), AR()
and VAR() trend models. In nmix() family models, the trend_formula is used
to set up a linear predictor for the underlying latent abundance. Be aware that
it can be very challenging to simultaneously estimate intercept parameters for
both the observation mode (captured by formula) and the process model (cap-
tured by trend_formula). Users are recommended to drop one of these using
the - 1 convention in the formula right hand side.

data A dataframe or list containing the model response variable and covariates

update.mvgam 123

required by the GAM formula and optional trend_formula. Should include
columns: #’

• series (a factor index of the series IDs; the number of levels should be
identical to the number of unique series labels (i.e. n_series = length(levels(data$series))))

• time (numeric or integer index of the time point for each observation).
For most dynamic trend types available in mvgam (see argument trend_model),
time should be measured in discrete, regularly spaced intervals (i.e. c(1,
2, 3, ...)). However you can use irregularly spaced intervals if using
trend_model = CAR(1), though note that any temporal intervals that are
exactly 0 will be adjusted to a very small number (1e-12) to prevent sam-
pling errors. See an example of CAR() trends in CAR

Should also include any other variables to be included in the linear predictor of
formula

newdata Optional dataframe or list of test data containing at least series and time
in addition to any other variables included in the linear predictor of formula. If
included, the observations in variable y will be set to NA when fitting the model
so that posterior simulations can be obtained

trend_model character or function specifying the time series dynamics for the latent trend.
Options are:

• None (no latent trend component; i.e. the GAM component is all that
contributes to the linear predictor, and the observation process is the only
source of error; similarly to what is estimated by gam)

• 'RW' or RW()
• 'AR1' or AR(p = 1)

• 'AR2' or AR(p = 2)

• 'AR3' or AR(p = 3)

• 'CAR1' or CAR(p = 1)

• 'VAR1' or VAR()(only available in Stan)
• 'PWlogistic, 'PWlinear' or PW() (only available in Stan)
• 'GP' or GP() (Gaussian Process with squared exponential kernel; only

available in Stan)

For all trend types apart from GP(), CAR() and PW(), moving average and/or cor-
related process error terms can also be estimated (for example, RW(cor = TRUE)
will set up a multivariate Random Walk if n_series > 1). See mvgam_trends
for more details

trend_map Optional data.frame specifying which series should depend on which latent
trends. Useful for allowing multiple series to depend on the same latent trend
process, but with different observation processes. If supplied, a latent factor
model is set up by setting use_lv = TRUE and using the mapping to set up the
shared trends. Needs to have column names series and trend, with integer
values in the trend column to state which trend each series should depend on.
The series column should have a single unique entry for each series in the data
(names should perfectly match factor levels of the series variable in data).
Note that if this is supplied, the intercept parameter in the process model will
NOT be automatically suppressed. See examples for details

124 update.mvgam

use_lv logical. If TRUE, use dynamic factors to estimate series’ latent trends in a re-
duced dimension format. Only available for RW(), AR() and GP() trend models.
Defaults to FALSE

n_lv integer the number of latent dynamic factors to use if use_lv == TRUE. Cannot
be > n_series. Defaults arbitrarily to min(2, floor(n_series / 2))

family family specifying the exponential observation family for the series. Currently
supported families are:

• gaussian() for real-valued data
• betar() for proportional data on (0,1)

• lognormal() for non-negative real-valued data
• student_t() for real-valued data
• Gamma() for non-negative real-valued data
• bernoulli() for binary data
• poisson() for count data
• nb() for overdispersed count data
• binomial() for count data with imperfect detection when the number of

trials is known; note that the cbind() function must be used to bind the
discrete observations and the discrete number of trials

• beta_binomial() as for binomial() but allows for overdispersion
• nmix() for count data with imperfect detection when the number of trials

is unknown and should be modeled via a State-Space N-Mixture model.
The latent states are Poisson, capturing the ’true’ latent abundance, while
the observation process is Binomial to account for imperfect detection. See
mvgam_families for an example of how to use this family

Note that only nb() and poisson() are available if using JAGS as the backend.
Default is poisson(). See mvgam_families for more details

share_obs_params

logical. If TRUE and the family has additional family-specific observation
parameters (e.g. variance components in student_t() or gaussian(), or dis-
persion parameters in nb() or betar()), these parameters will be shared across
all series. This is handy if you have multiple time series that you believe share
some properties, such as being from the same species over different spatial units.
Default is FALSE.

priors An optional data.frame with prior definitions (in JAGS or Stan syntax). if
using Stan, this can also be an object of class brmsprior (see. prior for details).
See get_mvgam_priors and ’Details’ for more information on changing default
prior distributions

chains integer specifying the number of parallel chains for the model. Ignored if
algorithm %in% c('meanfield', 'fullrank', 'pathfinder', 'laplace')

burnin integer specifying the number of warmup iterations of the Markov chain to
run to tune sampling algorithms. Ignored if algorithm %in% c('meanfield',
'fullrank', 'pathfinder', 'laplace')

samples integer specifying the number of post-warmup iterations of the Markov chain
to run for sampling the posterior distribution

update.mvgam 125

threads integer Experimental option to use multithreading for within-chain paralleli-
sation in Stan. We recommend its use only if you are experienced with Stan’s
reduce_sum function and have a slow running model that cannot be sped up by
any other means. Only available for some families(poisson(), nb(), gaussian())
and when using Cmdstan as the backend

algorithm Character string naming the estimation approach to use. Options are "sampling"
for MCMC (the default), "meanfield" for variational inference with factorized
normal distributions, "fullrank" for variational inference with a multivariate
normal distribution, "laplace" for a Laplace approximation (only available
when using cmdstanr as the backend) or "pathfinder" for the pathfinder al-
gorithm (only currently available when using cmdstanr as the backend). Can
be set globally for the current R session via the "brms.algorithm" option (see
options). Limited testing suggests that "meanfield" performs best out of the
non-MCMC approximations for dynamic GAMs, possibly because of the dif-
ficulties estimating covariances among the many spline parameters and latent
trend parameters. But rigorous testing has not been carried out

lfo Logical indicating whether this is part of a call to lfo_cv.mvgam. Returns a
lighter version of the model with no residuals and fewer monitored parameters
to speed up post-processing. But other downstream functions will not work
properly, so users should always leave this set as FALSE

... Other arguments to be passed to mvgam

Value

A list object of class mvgam containing model output, the text representation of the model file,
the mgcv model output (for easily generating simulations at unsampled covariate values), Dunn-
Smyth residuals for each series and key information needed for other functions in the package. See
mvgam-class for details. Use methods(class = "mvgam") for an overview on available methods.

Examples

Simulate some data and fit a Poisson AR1 model
simdat <- sim_mvgam(n_series = 1, trend_model = AR())
mod <- mvgam(y ~ s(season, bs = 'cc'),

trend_model = AR(),
noncentred = TRUE,
data = simdat$data_train,
chains = 2)

summary(mod)
conditional_effects(mod, type = 'link')

Update to an AR2 model
updated_mod <- update(mod, trend_model = AR(p = 2),

noncentred = TRUE)
summary(updated_mod)
conditional_effects(updated_mod, type = 'link')

Now update to a Binomial AR1 by adding information on trials
requires that we supply newdata that contains the 'trials' variable
simdat$data_train$trials <- max(simdat$data_train$y) + 15

126 update.mvgam

updated_mod <- update(mod,
formula = cbind(y, trials) ~ s(season, bs = 'cc'),
noncentred = TRUE,
data = simdat$data_train,
family = binomial())

summary(updated_mod)
conditional_effects(updated_mod, type = 'link')

Index

∗ datasets
all_neon_tick_data, 4
portal_data, 96

‘mgcv‘ (index-mvgam), 34

add_residuals, 53
add_residuals (add_residuals.mvgam), 3
add_residuals.mvgam, 3
all_neon_tick_data, 4
and (index-mvgam), 34
AR, 80
AR (RW), 113
as.array.mvgam (mvgam_draws), 65
as.data.frame.mvgam (mvgam_draws), 65
as.matrix.mvgam (mvgam_draws), 65
as_draws.mvgam (mvgam_draws), 65
as_draws_array.mvgam (mvgam_draws), 65
as_draws_df.mvgam (mvgam_draws), 65
as_draws_list.mvgam (mvgam_draws), 65
as_draws_matrix.mvgam (mvgam_draws), 65
as_draws_rvars.mvgam (mvgam_draws), 65

bam, 47
bayesplot, 105
bernoulli, 69
bernoulli (mvgam_families), 68
beta_binomial, 69
beta_binomial (mvgam_families), 68
betar, 69
betar (mvgam_families), 68
binomial, 69
brms::prepare_predictions(), 41

CAR, 22, 51, 80, 123
CAR (RW), 113
cmdstan_model, 23, 54
code, 5
coef.mvgam (summary.mvgam), 120
coefficient (index-mvgam), 34
compare_mvgams, 38

compare_mvgams (evaluate_mvgams), 13
conditional_effects.mvgam, 6, 57, 82, 93,

94

datagrid(), 77
dplyr::filter(), 77
draw.mvgam (gratia_mvgam_enhancements),

28
drawDotmvgam

(gratia_mvgam_enhancements), 28
dynamic, 8, 56, 74

ensemble, 19, 116
ensemble (ensemble.mvgam_forecast), 11
ensemble.mvgam_forecast, 11
eval_mvgam (evaluate_mvgams), 13
eval_smooth.hilbert.smooth

(gratia_mvgam_enhancements), 28
eval_smooth.mod.smooth

(gratia_mvgam_enhancements), 28
eval_smooth.moi.smooth

(gratia_mvgam_enhancements), 28
eval_smoothDothilbertDotsmooth

(gratia_mvgam_enhancements), 28
eval_smoothDotmodDotsmooth

(gratia_mvgam_enhancements), 28
eval_smoothDotmoiDotsmooth

(gratia_mvgam_enhancements), 28
evaluate_mvgams, 13

find_predictors.mvgam
(mvgam_marginaleffects), 75

find_predictors.mvgam_prefit
(mvgam_marginaleffects), 75

findjags, 54
fitted.mvgam, 16
forecast, 15, 38, 72, 73
forecast (forecast.mvgam), 18
forecast.mvgam, 18, 33, 42, 57, 73, 98, 100,

101, 108, 116

127

128 INDEX

forecast.mvgam(), 11, 116
formula, 45, 74
formula.gam, 74
formula.mvgam, 20
formula.mvgam_prefit (formula.mvgam), 20

gam, 23, 47, 52, 57, 74, 78, 93, 119, 123
gam.models, 57, 74
Gamma, 69
gamObject, 63
gaussian, 69
get_coef.mvgam (mvgam_marginaleffects),

75
get_data.mvgam (mvgam_marginaleffects),

75
get_data.mvgam_prefit

(mvgam_marginaleffects), 75
get_mvgam_priors, 21, 53, 55–57, 79, 124
get_predict.mvgam

(mvgam_marginaleffects), 75
get_vcov.mvgam (mvgam_marginaleffects),

75
ggplot, 7, 45
ggplot2::coord_sf(), 31, 32
ggplot2::geom_contour(), 31
ggplot2::ggplot(), 32
ggplot2::guide_axis(), 31
glm, 73
GP, 27, 80
gp, 27, 56, 74
gp.smooth, 9
gratia_mvgam_enhancements, 28, 82, 93, 94

hindcast, 19, 72
hindcast (hindcast.mvgam), 33
hindcast.mvgam, 17, 18, 33, 73, 98, 100, 102

Index (index-mvgam), 34
index-mvgam, 34
insight::find_predictors(), 78
insight::get_data(), 76, 78
irf, 74
irf (irf.mvgam), 35
irf(), 84
irf.mvgam, 35

jagam, 55, 57, 74, 121

lfo_cv, 14, 15, 42

lfo_cv (lfo_cv.mvgam), 36
lfo_cv.mvgam, 36, 53, 125
log_posterior.mvgam

(mvgam_diagnostics), 64
logLik.mvgam, 39
lognormal, 69
lognormal (mvgam_families), 68
loo.mvgam, 41
loo::loo(), 41, 42
loo::loo_compare(), 41, 42
loo_compare.mvgam, 57
loo_compare.mvgam (loo.mvgam), 41
lv_correlations, 43

marginaleffects::get_coef(), 78
marginaleffects::get_predict(), 78
marginaleffects::get_vcov(), 78
marginaleffects::set_coef(), 78
mcmc_pairs, 80
mcmc_plot.mvgam, 44, 57
mgcv::exclude.too.far(), 31
mgcv::plot.gam(), 30
model.frame.mvgam, 45
model.frame.mvgam_prefit

(model.frame.mvgam), 45
monotonic, 46
mvgam, 24, 40, 46, 49, 62, 64, 73, 74, 79, 110,

117, 120, 125
mvgam(), 3, 18, 30, 33–35, 37, 81, 85, 86,

88–90, 92, 94, 96, 98, 99, 101, 102,
107, 122

mvgam-class, 62
mvgam_diagnostics, 64
mvgam_draws, 45, 65
mvgam_families, 23, 52, 55, 56, 68, 124
mvgam_forecast-class, 72
mvgam_formulae, 21, 24, 50, 55, 73
mvgam_irf-class, 74
mvgam_marginaleffects, 75
mvgam_trends, 23, 53, 55, 56, 78, 119, 123

names (index-mvgam), 34
nb, 69
nb (mvgam_families), 68
neff_ratio (mvgam_diagnostics), 64
nmix (mvgam_families), 68
nuts_params (mvgam_diagnostics), 64

options, 54, 125

INDEX 129

pairs, 80
pairs.mvgam, 80
par, 87, 95, 102
patchwork::plot_layout(), 31
plot.gam, 82, 93, 94
plot.mvgam, 57, 81
plot.mvgam_conditional_effects

(conditional_effects.mvgam), 6
plot.mvgam_forecast, 12
plot.mvgam_forecast

(plot_mvgam_forecasts), 86
plot.mvgam_irf, 36, 83
plot.mvgam_lfo, 84
plot_mvgam_factors, 82, 85
plot_mvgam_fc, 82, 98, 100, 101, 108
plot_mvgam_fc (plot_mvgam_forecasts), 86
plot_mvgam_forecasts, 86
plot_mvgam_pterms, 88
plot_mvgam_randomeffects, 82, 89
plot_mvgam_resids, 82, 89
plot_mvgam_series, 56, 90
plot_mvgam_smooth, 82, 92
plot_mvgam_trend, 82, 94
plot_mvgam_uncertainty, 82, 95
plot_predictions, 7, 57, 82
plot_slopes, 7, 57, 82
poisson, 69
portal_data, 96
posterior_epred.mvgam, 17, 41, 97, 100,

102, 113
posterior_linpred.mvgam, 98, 99, 102
posterior_predict.mvgam, 97, 98, 100, 100
pp_check (pp_check.mvgam), 104
pp_check.mvgam, 41, 57, 103, 104, 104
PPC, 105
ppc, 41, 105
ppc (ppc.mvgam), 102
ppc.mvgam, 102
predict.gam, 108
Predict.matrix.mod.smooth (monotonic),

46
Predict.matrix.moi.smooth (monotonic),

46
predict.mvgam, 17, 41, 57, 104, 105, 106, 113
prepare_predictions, 17, 113
print.mvgam, 109
print.mvgam_conditional_effects

(conditional_effects.mvgam), 6

prior, 24, 53, 57, 124
PW, 80, 110

residuals.mvgam, 112
rhat (mvgam_diagnostics), 64
roll_eval_mvgam (evaluate_mvgams), 13
RW, 80, 113

s, 56, 74
sampling, 54
score, 15, 19, 38
score (score.mvgam_forecast), 115
score.mvgam_forecast, 12, 42, 57, 115
series_to_mvgam, 117
set_coef.mvgam (mvgam_marginaleffects),

75
sim_mvgam, 118
smooth.construct, 47
smooth.construct.mod.smooth.spec

(monotonic), 46
smooth.construct.moi.smooth.spec, 74
smooth.construct.moi.smooth.spec

(monotonic), 46
smooth.construct.re.smooth.spec, 55
stan, 23, 54, 64
stancode.mvgam (code), 5
stancode.mvgam_prefit (code), 5
standata.mvgam_prefit (code), 5
student, 69
student (mvgam_families), 68
student_t (mvgam_families), 68
subset(), 77
summary.gam, 121
summary.mvgam, 57, 120
summary.mvgam_prefit (summary.mvgam),

120

t2, 74
te, 56, 74
terms, 45
their (index-mvgam), 34
ti, 56, 74
ts, 117
tweedie (mvgam_families), 68

update.mvgam, 14, 53, 121

VAR, 36, 74, 80
VAR (RW), 113

130 INDEX

variables (index-mvgam), 34
vb, 54

xts, 117

	add_residuals.mvgam
	all_neon_tick_data
	code
	conditional_effects.mvgam
	dynamic
	ensemble.mvgam_forecast
	evaluate_mvgams
	fitted.mvgam
	forecast.mvgam
	formula.mvgam
	get_mvgam_priors
	GP
	gratia_mvgam_enhancements
	hindcast.mvgam
	index-mvgam
	irf.mvgam
	lfo_cv.mvgam
	logLik.mvgam
	loo.mvgam
	lv_correlations
	mcmc_plot.mvgam
	model.frame.mvgam
	monotonic
	mvgam
	mvgam-class
	mvgam_diagnostics
	mvgam_draws
	mvgam_families
	mvgam_forecast-class
	mvgam_formulae
	mvgam_irf-class
	mvgam_marginaleffects
	mvgam_trends
	pairs.mvgam
	plot.mvgam
	plot.mvgam_irf
	plot.mvgam_lfo
	plot_mvgam_factors
	plot_mvgam_forecasts
	plot_mvgam_pterms
	plot_mvgam_randomeffects
	plot_mvgam_resids
	plot_mvgam_series
	plot_mvgam_smooth
	plot_mvgam_trend
	plot_mvgam_uncertainty
	portal_data
	posterior_epred.mvgam
	posterior_linpred.mvgam
	posterior_predict.mvgam
	ppc.mvgam
	pp_check.mvgam
	predict.mvgam
	print.mvgam
	PW
	residuals.mvgam
	RW
	score.mvgam_forecast
	series_to_mvgam
	sim_mvgam
	summary.mvgam
	update.mvgam
	Index

