The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
NOTE: This R package focuses on the implementation of latent variable methods and multivariate modeling tools. The focus is on exploratory analyses using dimensionality reduction methods and classical multivariate statistical tools.
Fitting a PLS model:
library(mvdalab)
data(Penta)
<- plsFit(log.RAI ~., scale = TRUE, data = Penta[, -1],
mod1 ncomp = 3, method = "bidiagpls",
validation = "oob")
summary(mod1)
#> Call:
#>
#> plsFit(formula = log.RAI ~ ., ncomp = 3, data = Penta[, -1],
#> method = "bidiagpls", scale = TRUE,
#> validation = "oob")
#>
#> Coefficients:
#> Estimate Bootstrap Error 't value' bias 'bias t value'
#> L3 0.438131130 0.07813105 5.60764388 -0.056287765 -0.72042756
#> S3 -0.339839340 0.08368706 -4.06083517 0.044477379 0.53147262
#> P1 -0.210181974 0.06071820 -3.46159762 0.057955814 0.95450482
#> S1 -0.135884870 0.06997010 -1.94204192 0.019907955 0.28452089
#> P3 0.111249534 0.06854336 1.62305337 0.034862926 0.50862586
#> S2 0.089752422 0.04701730 1.90892350 0.006892843 0.14660228
#> L2 0.071367951 0.04526160 1.57678793 -0.019359275 -0.42771960
#> L4 0.069951677 0.07232330 0.96720806 -0.004522244 -0.06252818
#> L5 0.035696148 0.04552429 0.78411217 0.008591990 0.18873419
#> P4 -0.028238597 0.05462905 -0.51691543 -0.020000349 -0.36611199
#> P2 -0.025167765 0.06283351 -0.40054683 -0.012729431 -0.20258984
#> S4 0.020226747 0.06658432 0.30377644 -0.037592328 -0.56458231
#> L1 0.017465764 0.06489465 0.26914025 -0.006988723 -0.10769335
#> S5 0.010701880 0.04456740 0.24012801 -0.004024037 -0.09029106
#> P5 -0.002811084 0.04681625 -0.06004504 0.003525576 0.07530667
#>
#> Fit Summary:
#>
#> Number of objects = 30
#> Number of predictor variables = 15
#> Method: bidiagpls
#> No. of bootstrap samples = 1000
#> Number of components considered
#> in above parameter estimates = 3
#> R2X = 0.228 0.389 0.485
#> R2Y = 0.691 0.824 0.874
#> Out-of-Bag R2 (per component) = 0.446 0.458 0.354
#> Out-of-Bag PRESS (per component) = 4.335 3.902 4.455
#> Out-of-Bag MSPRESS.632 (per component) = 0.335 0.263 0.286
#> Out-of-Bag RMSPRESS.632 (per component) = 0.578 0.512 0.535
PCA via NIPALS.
library(mvdalab)
<- pca.nipals(iris[, 1:4], ncomps = 4, tol = 1e-08)
my.nipals names(my.nipals)
#> [1] "Loadings" "Scores" "Loading.Space" "Score.Space"
$Loadings
my.nipals#> [,1] [,2] [,3] [,4]
#> Sepal.Length 0.36138514 0.65659919 -0.58203416 0.3154592
#> Sepal.Width -0.08452411 0.73015136 0.59793829 -0.3196944
#> Petal.Length 0.85667099 -0.17337204 0.07625627 -0.4798353
#> Petal.Width 0.35828937 -0.07548926 0.54579393 0.7536837
svd(scale(iris[, 1:4], scale = FALSE))$v
#> [,1] [,2] [,3] [,4]
#> [1,] 0.36138659 -0.65658877 0.58202985 0.3154872
#> [2,] -0.08452251 -0.73016143 -0.59791083 -0.3197231
#> [3,] 0.85667061 0.17337266 -0.07623608 -0.4798390
#> [4,] 0.35828920 0.07548102 -0.54583143 0.7536574
Traditional Multivariate Mean Vector Comparison.
library(mvdalab)
data(College)
<- College
dat1 #Generate a 'fake' difference of 15 units
<- College + matrix(rnorm(nrow(dat1) * ncol(dat1), mean = 15),
dat2 nrow = nrow(dat1), ncol = ncol(dat1))
<- MVComp(dat1, dat2, level = .95)
Comparison
Comparison#> lower 95 % confidence upper 95 % confidence Significance
#> 1 -47.66009 17.95686 Not Significant
#> 2 -19.69886 -10.07013 Significant
#> 3 -16.88621 -12.75947 Significant
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.