The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
test.R
#> asaur::pharmacoSmoking
#> Relative Efficiency: 1.14
#> term estimate stderr pvalue method corr
#> 1 Surv(time = ttr, event = relapse) -0.538 0.20 0.0074 PATED NA
#> 2 Surv(time = ttr, event = relapse) -0.605 0.21 0.0048 Standard 1.0000
#> 3 age 2.170 2.11 0.3030 Prognostic -0.2144
#> 4 yearsSmoking 1.963 2.08 0.3461 Prognostic -0.1494
#> 5 priorAttempts 15.514 16.35 0.3426 Prognostic 0.0187
#> 6 longestNoSmoke 116.806 192.25 0.5435 Prognostic -0.1463
#> 7 gender 0.074 0.38 0.8438 Prognostic -0.0740
#> 8 I(race == "black") -0.543 0.40 0.1717 Prognostic 0.0816
#> 9 I(race == "hispanic") 0.051 0.73 0.9443 Prognostic -0.0420
#> 10 I(race == "white") 0.467 0.37 0.2108 Prognostic -0.0243
#> 11 I(employment == "ft") -0.149 0.36 0.6821 Prognostic -0.1217
#> 12 I(employment == "pt") 0.054 0.57 0.9244 Prognostic 0.1133
#> 13 I(levelSmoking == "heavy") 0.089 0.40 0.8231 Prognostic -0.0067
test.R
#> coin::glioma
#> Relative Efficiency: 1.66
#> term estimate stderr pvalue method corr
#> 1 Surv(time = time, event = event) -1.423 0.36 7.1e-05 PATED NA
#> 2 Surv(time = time, event = event) -1.829 0.46 7.4e-05 Standard 1.00
#> 3 age -3.272 4.67 4.8e-01 Prognostic 0.33
#> 4 sex 0.095 0.67 8.9e-01 Prognostic 0.13
#> 5 I(histology == "GBM") -1.012 0.69 1.4e-01 Prognostic 0.59
test.R
#> iBST::burn
#> Relative Efficiency: 1.15
#> term estimate stderr pvalue method corr
#> 1 Surv(time = T3, event = D3) -0.582 0.27 0.034 PATED NA
#> 2 Surv(time = T3, event = D3) -0.561 0.29 0.056 Standard 1.000
#> 3 Z2 -0.083 0.39 0.832 Prognostic -0.149
#> 4 Z3 0.088 0.49 0.858 Prognostic 0.215
#> 5 Z5 -0.125 0.33 0.702 Prognostic 0.029
#> 6 Z6 0.442 0.40 0.265 Prognostic 0.113
#> 7 Z7 0.821 0.46 0.074 Prognostic 0.055
#> 8 Z8 -0.256 0.33 0.438 Prognostic -0.035
#> 9 Z9 0.294 0.36 0.408 Prognostic -0.042
#> 10 Z10 -0.448 0.36 0.210 Prognostic -0.013
#> 11 I(Z11 == 1) 0.541 0.73 0.458 Prognostic -0.104
#> 12 I(Z11 == 2) -0.718 0.52 0.163 Prognostic 0.025
#> 13 I(Z11 == 3) 0.405 0.65 0.533 Prognostic 0.195
#> 14 Z4 -5.483 3.18 0.085 Prognostic 0.074
test.R
#> invGauss::d.oropha.rec
#> Relative Efficiency: 1.06
#> term estimate stderr pvalue method corr
#> 1 Surv(time = time, event = status) 0.16718 0.166 0.31 PATED NA
#> 2 Surv(time = time, event = status) 0.17374 0.171 0.31 Standard 1.000
#> 3 I(sex == 1) 0.00065 0.061 0.99 Prognostic 0.050
#> 4 age -0.37169 1.572 0.81 Prognostic 0.019
#> 5 tstage -0.03691 0.117 0.75 Prognostic 0.181
#> 6 nstage 0.13222 0.171 0.44 Prognostic 0.118
test.R
#> JM::aids.id
#> Relative Efficiency: 1.25
#> term estimate stderr pvalue method corr
#> 1 Surv(time = Time, event = death) -0.247 0.13 0.059 PATED NA
#> 2 Surv(time = Time, event = death) -0.210 0.15 0.150 Standard 1.00
#> 3 CD4 -0.213 0.44 0.625 Prognostic -0.40
#> 4 gender -0.016 0.31 0.959 Prognostic -0.03
#> 5 I(prevOI == "AIDS") 0.084 0.20 0.668 Prognostic 0.35
#> 6 I(AZT == "intolerance") -0.080 0.19 0.676 Prognostic -0.23
test.R
#> mlr3proba::actg
#> Relative Efficiency: 1.09
#> term estimate stderr pvalue method corr
#> 1 Surv(time = time, event = event) -0.6755 0.21 0.0011 PATED NA
#> 2 Surv(time = time, event = event) -0.6844 0.22 0.0015 Standard 1.0000
#> 3 strat2 -0.0011 0.12 0.9930 Prognostic -0.1825
#> 4 sex 0.1517 0.16 0.3305 Prognostic 0.0011
#> 5 I(ivdrug == 1) 0.0328 0.16 0.8389 Prognostic 0.0398
#> 6 I(raceth == 1) 0.0665 0.12 0.5732 Prognostic 0.0048
#> 7 I(raceth == 2) -0.0183 0.13 0.8884 Prognostic -0.0435
#> 8 I(raceth == 3) -0.0774 0.15 0.6170 Prognostic 0.0264
#> 9 hemophil -0.4126 0.35 0.2389 Prognostic -0.0164
#> 10 I(karnof == 100) -0.0537 0.12 0.6656 Prognostic -0.0961
#> 11 I(karnof == 90) 0.0587 0.12 0.6196 Prognostic -0.0467
#> 12 I(karnof == 80) -0.0460 0.16 0.7759 Prognostic 0.1200
#> 13 I(karnof == 70) 0.1341 0.36 0.7091 Prognostic 0.1489
#> 14 cd4 4.3155 4.13 0.2958 Prognostic -0.1939
#> 15 priorzdv 0.1439 1.72 0.9334 Prognostic -0.0396
#> 16 age 0.0503 0.52 0.9229 Prognostic 0.0609
test.R
#> joint.Cox::dataOvarian1
#> Relative Efficiency: 1.1
#> term estimate stderr pvalue method corr
#> 1 Surv(time = t.event, event = event) -0.1651 0.077 0.033 PATED NA
#> 2 Surv(time = t.event, event = event) -0.1696 0.081 0.036 Standard 1.000
#> 3 CXCL12 -0.0341 0.061 0.576 Prognostic 0.202
#> 4 NCOA3 -0.0583 0.060 0.331 Prognostic 0.154
#> 5 PDPN 0.0238 0.066 0.720 Prognostic 0.194
#> 6 TEAD1 0.0086 0.067 0.897 Prognostic 0.188
#> 7 TIMP2 0.0381 0.061 0.535 Prognostic 0.192
#> 8 YWHAB 0.0114 0.055 0.837 Prognostic 0.088
test.R
#> pec::Pbc3
#> Relative Efficiency: 1.58
#> term estimate stderr pvalue method corr
#> 1 Surv(time = days, event = event) -0.193 0.17 0.25 PATED NA
#> 2 Surv(time = days, event = event) -0.059 0.21 0.78 Standard 1.0000
#> 3 sex 0.026 0.30 0.93 Prognostic 0.1432
#> 4 I(stage == 1) -0.107 0.31 0.73 Prognostic -0.2463
#> 5 I(stage == 2) -0.336 0.26 0.20 Prognostic -0.1746
#> 6 I(stage == 3) 0.168 0.28 0.55 Prognostic -0.0013
#> 7 I(stage == 4) 0.253 0.26 0.32 Prognostic 0.3682
#> 8 gibleed -0.590 0.31 0.06 Prognostic 0.1358
#> 9 age 0.142 1.06 0.89 Prognostic 0.0618
#> 10 crea -1.150 1.97 0.56 Prognostic -0.1020
#> 11 bili 6.219 7.23 0.39 Prognostic 0.4977
#> 12 alkph -12.043 80.55 0.88 Prognostic 0.0986
#> 13 asptr 2.641 5.69 0.64 Prognostic 0.2231
#> 14 weight 0.391 1.11 0.72 Prognostic -0.1465
test.R
#> pec::cost
#> Relative Efficiency: 1.47
#> term estimate stderr pvalue method corr
#> 1 Surv(time = time, event = status) -1.8e-01 0.079 0.024 PATED NA
#> 2 Surv(time = time, event = status) -1.4e-01 0.095 0.140 Standard 1.000
#> 3 age 6.7e-01 0.900 0.459 Prognostic 0.417
#> 4 strokeScore -5.1e-01 1.009 0.613 Prognostic -0.268
#> 5 cholest 2.7e-02 0.118 0.819 Prognostic -0.055
#> 6 sex -1.1e-01 0.164 0.514 Prognostic 0.097
#> 7 hypTen 1.8e-01 0.173 0.301 Prognostic 0.081
#> 8 ihd -3.0e-15 0.218 1.000 Prognostic 0.133
#> 9 prevStroke -8.6e-02 0.207 0.680 Prognostic 0.145
#> 10 othDisease -2.6e-02 0.230 0.909 Prognostic 0.139
#> 11 alcohol -3.2e-01 0.175 0.068 Prognostic -0.122
#> 12 diabetes -1.6e-01 0.234 0.485 Prognostic 0.123
#> 13 smoke -2.3e-01 0.165 0.163 Prognostic -0.093
#> 14 atrialFib 3.3e-01 0.247 0.181 Prognostic 0.203
#> 15 hemor 3.0e-01 0.449 0.507 Prognostic 0.026
test.R
#> pec::GBSG2
#> Relative Efficiency: 1.18
#> term estimate stderr pvalue method corr
#> 1 Surv(time = time, event = cens) -0.33 0.11 0.0039 PATED NA
#> 2 Surv(time = time, event = cens) -0.36 0.12 0.0034 Standard 1.000
#> 3 tsize -0.82 1.13 0.4696 Prognostic 0.169
#> 4 pnodes 0.19 0.43 0.6643 Prognostic 0.326
#> 5 progrec 22.29 17.84 0.2116 Prognostic -0.187
#> 6 I(tgrade == "I") 0.24 0.24 0.3305 Prognostic -0.159
#> 7 I(tgrade == "II") 0.11 0.17 0.5291 Prognostic 0.006
#> 8 I(tgrade == "III") -0.28 0.19 0.1472 Prognostic 0.123
test.R
#> randomForestSRC::follic
#> Relative Efficiency: 1.11
#> term estimate stderr pvalue method corr
#> 1 Surv(time = time, event = status) -0.15 0.14 0.28 PATED NA
#> 2 Surv(time = time, event = status) -0.23 0.15 0.13 Standard 1.000
#> 3 age -2.37 1.47 0.11 Prognostic 0.311
#> 4 hgb 0.84 1.52 0.58 Prognostic -0.082
test.R
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.