The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

test

test.R

#> asaur::pharmacoSmoking
#> Relative Efficiency: 1.14
#>                                 term estimate stderr pvalue     method    corr
#> 1  Surv(time = ttr, event = relapse)   -0.538   0.20 0.0074      PATED      NA
#> 2  Surv(time = ttr, event = relapse)   -0.605   0.21 0.0048   Standard  1.0000
#> 3                                age    2.170   2.11 0.3030 Prognostic -0.2144
#> 4                       yearsSmoking    1.963   2.08 0.3461 Prognostic -0.1494
#> 5                      priorAttempts   15.514  16.35 0.3426 Prognostic  0.0187
#> 6                     longestNoSmoke  116.806 192.25 0.5435 Prognostic -0.1463
#> 7                             gender    0.074   0.38 0.8438 Prognostic -0.0740
#> 8                 I(race == "black")   -0.543   0.40 0.1717 Prognostic  0.0816
#> 9              I(race == "hispanic")    0.051   0.73 0.9443 Prognostic -0.0420
#> 10                I(race == "white")    0.467   0.37 0.2108 Prognostic -0.0243
#> 11             I(employment == "ft")   -0.149   0.36 0.6821 Prognostic -0.1217
#> 12             I(employment == "pt")    0.054   0.57 0.9244 Prognostic  0.1133
#> 13        I(levelSmoking == "heavy")    0.089   0.40 0.8231 Prognostic -0.0067

test.R

#> coin::glioma
#> Relative Efficiency: 1.66
#>                               term estimate stderr  pvalue     method corr
#> 1 Surv(time = time, event = event)   -1.423   0.36 7.1e-05      PATED   NA
#> 2 Surv(time = time, event = event)   -1.829   0.46 7.4e-05   Standard 1.00
#> 3                              age   -3.272   4.67 4.8e-01 Prognostic 0.33
#> 4                              sex    0.095   0.67 8.9e-01 Prognostic 0.13
#> 5            I(histology == "GBM")   -1.012   0.69 1.4e-01 Prognostic 0.59

test.R

#> iBST::burn
#> Relative Efficiency: 1.15
#>                           term estimate stderr pvalue     method   corr
#> 1  Surv(time = T3, event = D3)   -0.582   0.27  0.034      PATED     NA
#> 2  Surv(time = T3, event = D3)   -0.561   0.29  0.056   Standard  1.000
#> 3                           Z2   -0.083   0.39  0.832 Prognostic -0.149
#> 4                           Z3    0.088   0.49  0.858 Prognostic  0.215
#> 5                           Z5   -0.125   0.33  0.702 Prognostic  0.029
#> 6                           Z6    0.442   0.40  0.265 Prognostic  0.113
#> 7                           Z7    0.821   0.46  0.074 Prognostic  0.055
#> 8                           Z8   -0.256   0.33  0.438 Prognostic -0.035
#> 9                           Z9    0.294   0.36  0.408 Prognostic -0.042
#> 10                         Z10   -0.448   0.36  0.210 Prognostic -0.013
#> 11                 I(Z11 == 1)    0.541   0.73  0.458 Prognostic -0.104
#> 12                 I(Z11 == 2)   -0.718   0.52  0.163 Prognostic  0.025
#> 13                 I(Z11 == 3)    0.405   0.65  0.533 Prognostic  0.195
#> 14                          Z4   -5.483   3.18  0.085 Prognostic  0.074

test.R

#> invGauss::d.oropha.rec
#> Relative Efficiency: 1.06
#>                                term estimate stderr pvalue     method  corr
#> 1 Surv(time = time, event = status)  0.16718  0.166   0.31      PATED    NA
#> 2 Surv(time = time, event = status)  0.17374  0.171   0.31   Standard 1.000
#> 3                       I(sex == 1)  0.00065  0.061   0.99 Prognostic 0.050
#> 4                               age -0.37169  1.572   0.81 Prognostic 0.019
#> 5                            tstage -0.03691  0.117   0.75 Prognostic 0.181
#> 6                            nstage  0.13222  0.171   0.44 Prognostic 0.118

test.R

#> JM::aids.id
#> Relative Efficiency: 1.25
#>                               term estimate stderr pvalue     method  corr
#> 1 Surv(time = Time, event = death)   -0.247   0.13  0.059      PATED    NA
#> 2 Surv(time = Time, event = death)   -0.210   0.15  0.150   Standard  1.00
#> 3                              CD4   -0.213   0.44  0.625 Prognostic -0.40
#> 4                           gender   -0.016   0.31  0.959 Prognostic -0.03
#> 5              I(prevOI == "AIDS")    0.084   0.20  0.668 Prognostic  0.35
#> 6          I(AZT == "intolerance")   -0.080   0.19  0.676 Prognostic -0.23

test.R

#> mlr3proba::actg
#> Relative Efficiency: 1.09
#>                                term estimate stderr pvalue     method    corr
#> 1  Surv(time = time, event = event)  -0.6755   0.21 0.0011      PATED      NA
#> 2  Surv(time = time, event = event)  -0.6844   0.22 0.0015   Standard  1.0000
#> 3                            strat2  -0.0011   0.12 0.9930 Prognostic -0.1825
#> 4                               sex   0.1517   0.16 0.3305 Prognostic  0.0011
#> 5                    I(ivdrug == 1)   0.0328   0.16 0.8389 Prognostic  0.0398
#> 6                    I(raceth == 1)   0.0665   0.12 0.5732 Prognostic  0.0048
#> 7                    I(raceth == 2)  -0.0183   0.13 0.8884 Prognostic -0.0435
#> 8                    I(raceth == 3)  -0.0774   0.15 0.6170 Prognostic  0.0264
#> 9                          hemophil  -0.4126   0.35 0.2389 Prognostic -0.0164
#> 10                 I(karnof == 100)  -0.0537   0.12 0.6656 Prognostic -0.0961
#> 11                  I(karnof == 90)   0.0587   0.12 0.6196 Prognostic -0.0467
#> 12                  I(karnof == 80)  -0.0460   0.16 0.7759 Prognostic  0.1200
#> 13                  I(karnof == 70)   0.1341   0.36 0.7091 Prognostic  0.1489
#> 14                              cd4   4.3155   4.13 0.2958 Prognostic -0.1939
#> 15                         priorzdv   0.1439   1.72 0.9334 Prognostic -0.0396
#> 16                              age   0.0503   0.52 0.9229 Prognostic  0.0609

test.R

#> joint.Cox::dataOvarian1
#> Relative Efficiency: 1.1
#>                                  term estimate stderr pvalue     method  corr
#> 1 Surv(time = t.event, event = event)  -0.1651  0.077  0.033      PATED    NA
#> 2 Surv(time = t.event, event = event)  -0.1696  0.081  0.036   Standard 1.000
#> 3                              CXCL12  -0.0341  0.061  0.576 Prognostic 0.202
#> 4                               NCOA3  -0.0583  0.060  0.331 Prognostic 0.154
#> 5                                PDPN   0.0238  0.066  0.720 Prognostic 0.194
#> 6                               TEAD1   0.0086  0.067  0.897 Prognostic 0.188
#> 7                               TIMP2   0.0381  0.061  0.535 Prognostic 0.192
#> 8                               YWHAB   0.0114  0.055  0.837 Prognostic 0.088

test.R

#> pec::Pbc3
#> Relative Efficiency: 1.58
#>                                term estimate stderr pvalue     method    corr
#> 1  Surv(time = days, event = event)   -0.193   0.17   0.25      PATED      NA
#> 2  Surv(time = days, event = event)   -0.059   0.21   0.78   Standard  1.0000
#> 3                               sex    0.026   0.30   0.93 Prognostic  0.1432
#> 4                     I(stage == 1)   -0.107   0.31   0.73 Prognostic -0.2463
#> 5                     I(stage == 2)   -0.336   0.26   0.20 Prognostic -0.1746
#> 6                     I(stage == 3)    0.168   0.28   0.55 Prognostic -0.0013
#> 7                     I(stage == 4)    0.253   0.26   0.32 Prognostic  0.3682
#> 8                           gibleed   -0.590   0.31   0.06 Prognostic  0.1358
#> 9                               age    0.142   1.06   0.89 Prognostic  0.0618
#> 10                             crea   -1.150   1.97   0.56 Prognostic -0.1020
#> 11                             bili    6.219   7.23   0.39 Prognostic  0.4977
#> 12                            alkph  -12.043  80.55   0.88 Prognostic  0.0986
#> 13                            asptr    2.641   5.69   0.64 Prognostic  0.2231
#> 14                           weight    0.391   1.11   0.72 Prognostic -0.1465

test.R

#> pec::cost
#> Relative Efficiency: 1.47
#>                                 term estimate stderr pvalue     method   corr
#> 1  Surv(time = time, event = status) -1.8e-01  0.079  0.024      PATED     NA
#> 2  Surv(time = time, event = status) -1.4e-01  0.095  0.140   Standard  1.000
#> 3                                age  6.7e-01  0.900  0.459 Prognostic  0.417
#> 4                        strokeScore -5.1e-01  1.009  0.613 Prognostic -0.268
#> 5                            cholest  2.7e-02  0.118  0.819 Prognostic -0.055
#> 6                                sex -1.1e-01  0.164  0.514 Prognostic  0.097
#> 7                             hypTen  1.8e-01  0.173  0.301 Prognostic  0.081
#> 8                                ihd -3.0e-15  0.218  1.000 Prognostic  0.133
#> 9                         prevStroke -8.6e-02  0.207  0.680 Prognostic  0.145
#> 10                        othDisease -2.6e-02  0.230  0.909 Prognostic  0.139
#> 11                           alcohol -3.2e-01  0.175  0.068 Prognostic -0.122
#> 12                          diabetes -1.6e-01  0.234  0.485 Prognostic  0.123
#> 13                             smoke -2.3e-01  0.165  0.163 Prognostic -0.093
#> 14                         atrialFib  3.3e-01  0.247  0.181 Prognostic  0.203
#> 15                             hemor  3.0e-01  0.449  0.507 Prognostic  0.026

test.R

#> pec::GBSG2
#> Relative Efficiency: 1.18
#>                              term estimate stderr pvalue     method   corr
#> 1 Surv(time = time, event = cens)    -0.33   0.11 0.0039      PATED     NA
#> 2 Surv(time = time, event = cens)    -0.36   0.12 0.0034   Standard  1.000
#> 3                           tsize    -0.82   1.13 0.4696 Prognostic  0.169
#> 4                          pnodes     0.19   0.43 0.6643 Prognostic  0.326
#> 5                         progrec    22.29  17.84 0.2116 Prognostic -0.187
#> 6                I(tgrade == "I")     0.24   0.24 0.3305 Prognostic -0.159
#> 7               I(tgrade == "II")     0.11   0.17 0.5291 Prognostic  0.006
#> 8              I(tgrade == "III")    -0.28   0.19 0.1472 Prognostic  0.123

test.R

#> randomForestSRC::follic
#> Relative Efficiency: 1.11
#>                                term estimate stderr pvalue     method   corr
#> 1 Surv(time = time, event = status)    -0.15   0.14   0.28      PATED     NA
#> 2 Surv(time = time, event = status)    -0.23   0.15   0.13   Standard  1.000
#> 3                               age    -2.37   1.47   0.11 Prognostic  0.311
#> 4                               hgb     0.84   1.52   0.58 Prognostic -0.082

test.R

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.