The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
This vignette describes the analysis of data on the mean off-time
reduction in patients given dopamine agonists as adjunct therapy in
Parkinson’s disease, in a network of 7 trials of 4 active drugs plus
placebo (Dias et al.
2011). The data are available in this package as
parkinsons
:
head(parkinsons)
#> studyn trtn y se n diff se_diff
#> 1 1 1 -1.22 0.504 54 NA 0.504
#> 2 1 3 -1.53 0.439 95 -0.31 0.668
#> 3 2 1 -0.70 0.282 172 NA 0.282
#> 4 2 2 -2.40 0.258 173 -1.70 0.382
#> 5 3 1 -0.30 0.505 76 NA 0.505
#> 6 3 2 -2.60 0.510 71 -2.30 0.718
We consider analysing these data in three separate ways:
y
and corresponding
standard errors se
);diff
and
corresponding standard errors se_diff
);Note: In this case, with Normal likelihoods for both arms and contrasts, we will see that the three analyses give identical results. In general, unless the arm-based likelihood is Normal, results from a model using a contrast-based likelihood will not exactly match those from a model using an arm-based likelihood, since the contrast-based Normal likelihood is only an approximation. Similarity of results depends on the suitability of the Normal approximation, which may not always be appropriate - e.g. with a small number of events or small sample size for a binary outcome. The use of an arm-based likelihood (sometimes called an “exact” likelihood) is therefore preferable where possible in general.
We begin with an analysis of the arm-based data - means and standard errors.
We have arm-level continuous data giving the mean off-time reduction
(y
) and standard error (se
) in each arm. We
use the function set_agd_arm()
to set up the network.
arm_net <- set_agd_arm(parkinsons,
study = studyn,
trt = trtn,
y = y,
se = se,
sample_size = n)
arm_net
#> A network with 7 AgD studies (arm-based).
#>
#> ------------------------------------------------------- AgD studies (arm-based) ----
#> Study Treatment arms
#> 1 2: 1 | 3
#> 2 2: 1 | 2
#> 3 3: 4 | 1 | 2
#> 4 2: 4 | 3
#> 5 2: 4 | 3
#> 6 2: 4 | 5
#> 7 2: 4 | 5
#>
#> Outcome type: continuous
#> ------------------------------------------------------------------------------------
#> Total number of treatments: 5
#> Total number of studies: 7
#> Reference treatment is: 4
#> Network is connected
We let treatment 4 be set by default as the network reference
treatment, since this results in considerably improved sampling
efficiency over choosing treatment 1 as the network reference. The
sample_size
argument is optional, but enables the nodes to
be weighted by sample size in the network plot.
Plot the network structure.
We fit both fixed effect (FE) and random effects (RE) models.
First, we fit a fixed effect model using the nma()
function with trt_effects = "fixed"
. We use \(\mathrm{N}(0, 100^2)\) prior distributions
for the treatment effects \(d_k\) and
study-specific intercepts \(\mu_j\). We
can examine the range of parameter values implied by these prior
distributions with the summary()
method:
summary(normal(scale = 100))
#> A Normal prior distribution: location = 0, scale = 100.
#> 50% of the prior density lies between -67.45 and 67.45.
#> 95% of the prior density lies between -196 and 196.
The model is fitted using the nma()
function.
arm_fit_FE <- nma(arm_net,
trt_effects = "fixed",
prior_intercept = normal(scale = 100),
prior_trt = normal(scale = 10))
#> Note: Setting "4" as the network reference treatment.
Basic parameter summaries are given by the print()
method:
arm_fit_FE
#> A fixed effects NMA with a normal likelihood (identity link).
#> Inference for Stan model: normal.
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> post-warmup draws per chain=1000, total post-warmup draws=4000.
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
#> d[1] 0.52 0.01 0.48 -0.41 0.19 0.53 0.84 1.47 1554 1
#> d[2] -1.28 0.01 0.52 -2.30 -1.64 -1.28 -0.93 -0.27 1461 1
#> d[3] 0.04 0.01 0.33 -0.59 -0.19 0.04 0.27 0.66 1791 1
#> d[5] -0.30 0.00 0.21 -0.71 -0.44 -0.30 -0.16 0.13 2891 1
#> lp__ -6.69 0.06 2.38 -12.27 -8.05 -6.37 -4.95 -3.04 1581 1
#>
#> Samples were drawn using NUTS(diag_e) at Mon Apr 29 16:39:50 2024.
#> For each parameter, n_eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor on split chains (at
#> convergence, Rhat=1).
By default, summaries of the study-specific intercepts \(\mu_j\) are hidden, but could be examined
by changing the pars
argument:
The prior and posterior distributions can be compared visually using
the plot_prior_posterior()
function:
We now fit a random effects model using the nma()
function with trt_effects = "random"
. Again, we use \(\mathrm{N}(0, 100^2)\) prior distributions
for the treatment effects \(d_k\) and
study-specific intercepts \(\mu_j\),
and we additionally use a \(\textrm{half-N}(5^2)\) prior for the
heterogeneity standard deviation \(\tau\). We can examine the range of
parameter values implied by these prior distributions with the
summary()
method:
summary(normal(scale = 100))
#> A Normal prior distribution: location = 0, scale = 100.
#> 50% of the prior density lies between -67.45 and 67.45.
#> 95% of the prior density lies between -196 and 196.
summary(half_normal(scale = 5))
#> A half-Normal prior distribution: location = 0, scale = 5.
#> 50% of the prior density lies between 0 and 3.37.
#> 95% of the prior density lies between 0 and 9.8.
Fitting the RE model
arm_fit_RE <- nma(arm_net,
seed = 379394727,
trt_effects = "random",
prior_intercept = normal(scale = 100),
prior_trt = normal(scale = 100),
prior_het = half_normal(scale = 5),
adapt_delta = 0.99)
#> Note: Setting "4" as the network reference treatment.
#> Warning: There were 3 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: Examine the pairs() plot to diagnose sampling problems
We do see a small number of divergent transition errors, which cannot
simply be removed by increasing the value of the
adapt_delta
argument (by default set to 0.95
for RE models). To diagnose, we use the pairs()
method to
investigate where in the posterior distribution these divergences are
happening (indicated by red crosses):
The divergent transitions occur in the upper tail of the heterogeneity standard deviation. In this case, with only a small number of studies, there is not very much information to estimate the heterogeneity standard deviation and the prior distribution may be too heavy-tailed. We could consider a more informative prior distribution for the heterogeneity variance to aid estimation.
Basic parameter summaries are given by the print()
method:
arm_fit_RE
#> A random effects NMA with a normal likelihood (identity link).
#> Inference for Stan model: normal.
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> post-warmup draws per chain=1000, total post-warmup draws=4000.
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
#> d[1] 0.55 0.02 0.66 -0.65 0.16 0.53 0.93 1.77 1437 1
#> d[2] -1.31 0.02 0.71 -2.69 -1.74 -1.31 -0.89 0.00 1628 1
#> d[3] 0.04 0.01 0.50 -0.91 -0.25 0.04 0.33 0.97 1636 1
#> d[5] -0.31 0.01 0.46 -1.26 -0.51 -0.29 -0.09 0.59 2024 1
#> lp__ -12.83 0.10 3.60 -20.63 -15.03 -12.50 -10.23 -6.88 1380 1
#> tau 0.40 0.02 0.40 0.01 0.13 0.29 0.52 1.49 618 1
#>
#> Samples were drawn using NUTS(diag_e) at Mon Apr 29 16:40:01 2024.
#> For each parameter, n_eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor on split chains (at
#> convergence, Rhat=1).
By default, summaries of the study-specific intercepts \(\mu_j\) and study-specific relative effects
\(\delta_{jk}\) are hidden, but could
be examined by changing the pars
argument:
The prior and posterior distributions can be compared visually using
the plot_prior_posterior()
function:
Model fit can be checked using the dic()
function:
(arm_dic_FE <- dic(arm_fit_FE))
#> Residual deviance: 13.4 (on 15 data points)
#> pD: 11.1
#> DIC: 24.4
(arm_dic_RE <- dic(arm_fit_RE))
#> Residual deviance: 13.7 (on 15 data points)
#> pD: 12.6
#> DIC: 26.3
Both models fit the data well, having posterior mean residual deviance close to the number of data points. The DIC is similar between models, so we choose the FE model based on parsimony.
We can also examine the residual deviance contributions with the
corresponding plot()
method.
For comparison with Dias et al. (2011), we can produce relative effects
against placebo using the relative_effects()
function with
trt_ref = 1
:
(arm_releff_FE <- relative_effects(arm_fit_FE, trt_ref = 1))
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d[4] -0.52 0.48 -1.47 -0.84 -0.53 -0.19 0.41 1561 2426 1
#> d[2] -1.81 0.32 -2.46 -2.02 -1.81 -1.59 -1.19 5125 2917 1
#> d[3] -0.48 0.49 -1.44 -0.81 -0.48 -0.15 0.47 2416 2508 1
#> d[5] -0.82 0.53 -1.86 -1.18 -0.83 -0.47 0.20 1762 1810 1
plot(arm_releff_FE, ref_line = 0)
(arm_releff_RE <- relative_effects(arm_fit_RE, trt_ref = 1))
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d[4] -0.55 0.66 -1.77 -0.93 -0.53 -0.16 0.65 1498 1706 1
#> d[2] -1.86 0.51 -2.94 -2.15 -1.86 -1.56 -0.87 4005 2430 1
#> d[3] -0.51 0.66 -1.72 -0.90 -0.49 -0.12 0.75 2471 2260 1
#> d[5] -0.85 0.79 -2.37 -1.28 -0.85 -0.41 0.71 1801 1677 1
plot(arm_releff_RE, ref_line = 0)
Following Dias et al. (2011), we produce absolute predictions of
the mean off-time reduction on each treatment assuming a Normal
distribution for the outcomes on treatment 1 (placebo) with mean \(-0.73\) and precision \(21\). We use the predict()
method, where the baseline
argument takes a
distr()
distribution object with which we specify the
corresponding Normal distribution, and we specify
baseline_trt = 1
to indicate that the baseline distribution
corresponds to treatment 1. (Strictly speaking,
type = "response"
is unnecessary here, since the identity
link function was used.)
arm_pred_FE <- predict(arm_fit_FE,
baseline = distr(qnorm, mean = -0.73, sd = 21^-0.5),
type = "response",
baseline_trt = 1)
arm_pred_FE
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[4] -1.25 0.53 -2.30 -1.61 -1.25 -0.89 -0.22 1796 2499 1
#> pred[1] -0.73 0.22 -1.16 -0.88 -0.73 -0.58 -0.29 3910 3936 1
#> pred[2] -2.53 0.39 -3.29 -2.80 -2.54 -2.27 -1.77 4640 2825 1
#> pred[3] -1.21 0.53 -2.22 -1.57 -1.21 -0.86 -0.15 2585 2980 1
#> pred[5] -1.55 0.57 -2.68 -1.94 -1.56 -1.16 -0.44 1993 2600 1
plot(arm_pred_FE)
arm_pred_RE <- predict(arm_fit_RE,
baseline = distr(qnorm, mean = -0.73, sd = 21^-0.5),
type = "response",
baseline_trt = 1)
arm_pred_RE
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[4] -1.27 0.69 -2.62 -1.69 -1.26 -0.85 0.05 1650 1667 1
#> pred[1] -0.73 0.22 -1.16 -0.87 -0.73 -0.58 -0.30 3976 3867 1
#> pred[2] -2.59 0.56 -3.68 -2.92 -2.57 -2.25 -1.49 3978 2541 1
#> pred[3] -1.23 0.69 -2.54 -1.66 -1.23 -0.81 0.13 2654 2319 1
#> pred[5] -1.58 0.83 -3.12 -2.05 -1.57 -1.11 0.04 1930 1701 1
plot(arm_pred_RE)
If the baseline
argument is omitted, predictions of mean
off-time reduction will be produced for every study in the network based
on their estimated baseline response \(\mu_j\):
arm_pred_FE_studies <- predict(arm_fit_FE, type = "response")
arm_pred_FE_studies
#> ---------------------------------------------------------------------- Study: 1 ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[1: 4] -1.65 0.47 -2.57 -1.96 -1.66 -1.33 -0.75 2070 2888 1
#> pred[1: 1] -1.12 0.43 -1.95 -1.41 -1.13 -0.84 -0.28 3883 3420 1
#> pred[1: 2] -2.93 0.51 -3.92 -3.28 -2.93 -2.57 -1.96 3903 3458 1
#> pred[1: 3] -1.61 0.40 -2.39 -1.87 -1.60 -1.34 -0.84 4134 3242 1
#> pred[1: 5] -1.95 0.51 -2.97 -2.28 -1.95 -1.60 -0.95 2263 2753 1
#>
#> ---------------------------------------------------------------------- Study: 2 ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[2: 4] -1.16 0.51 -2.19 -1.50 -1.17 -0.81 -0.20 1462 2235 1
#> pred[2: 1] -0.64 0.26 -1.15 -0.81 -0.64 -0.46 -0.13 4983 3344 1
#> pred[2: 2] -2.44 0.24 -2.92 -2.60 -2.44 -2.28 -1.99 4253 3244 1
#> pred[2: 3] -1.12 0.52 -2.12 -1.47 -1.12 -0.76 -0.10 2389 2725 1
#> pred[2: 5] -1.46 0.55 -2.56 -1.84 -1.46 -1.09 -0.39 1653 2265 1
#>
#> ---------------------------------------------------------------------- Study: 3 ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[3: 4] -1.11 0.41 -1.94 -1.38 -1.11 -0.83 -0.30 1796 2328 1
#> pred[3: 1] -0.59 0.35 -1.27 -0.83 -0.59 -0.36 0.11 4190 3442 1
#> pred[3: 2] -2.40 0.38 -3.15 -2.65 -2.40 -2.13 -1.65 4199 3486 1
#> pred[3: 3] -1.07 0.46 -1.95 -1.38 -1.07 -0.77 -0.16 2930 2423 1
#> pred[3: 5] -1.41 0.47 -2.33 -1.72 -1.41 -1.10 -0.49 1972 2508 1
#>
#> ---------------------------------------------------------------------- Study: 4 ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[4: 4] -0.39 0.30 -0.97 -0.60 -0.39 -0.18 0.19 2277 2640 1
#> pred[4: 1] 0.13 0.51 -0.86 -0.21 0.14 0.48 1.14 2326 2753 1
#> pred[4: 2] -1.67 0.55 -2.76 -2.05 -1.67 -1.30 -0.60 2282 2895 1
#> pred[4: 3] -0.35 0.25 -0.83 -0.52 -0.35 -0.18 0.14 4546 3077 1
#> pred[4: 5] -0.69 0.37 -1.43 -0.94 -0.69 -0.45 0.02 2468 2805 1
#>
#> ---------------------------------------------------------------------- Study: 5 ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[5: 4] -0.56 0.34 -1.20 -0.79 -0.56 -0.33 0.13 2475 2599 1
#> pred[5: 1] -0.03 0.53 -1.10 -0.38 -0.03 0.32 1.00 2503 2883 1
#> pred[5: 2] -1.84 0.57 -2.96 -2.21 -1.84 -1.45 -0.71 2344 2950 1
#> pred[5: 3] -0.52 0.29 -1.10 -0.71 -0.52 -0.31 0.06 5216 3387 1
#> pred[5: 5] -0.86 0.40 -1.63 -1.13 -0.86 -0.59 -0.04 2629 2791 1
#>
#> ---------------------------------------------------------------------- Study: 6 ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[6: 4] -2.20 0.18 -2.56 -2.31 -2.19 -2.08 -1.86 3342 2849 1
#> pred[6: 1] -1.67 0.51 -2.68 -2.02 -1.68 -1.33 -0.66 1728 2468 1
#> pred[6: 2] -3.48 0.55 -4.53 -3.86 -3.49 -3.10 -2.40 1567 2472 1
#> pred[6: 3] -2.16 0.37 -2.86 -2.41 -2.15 -1.91 -1.41 2043 2625 1
#> pred[6: 5] -2.50 0.17 -2.82 -2.61 -2.50 -2.39 -2.16 5040 3309 1
#>
#> ---------------------------------------------------------------------- Study: 7 ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[7: 4] -1.81 0.18 -2.17 -1.93 -1.80 -1.68 -1.46 3122 2471 1
#> pred[7: 1] -1.28 0.52 -2.28 -1.64 -1.28 -0.94 -0.26 1617 2223 1
#> pred[7: 2] -3.09 0.56 -4.16 -3.48 -3.08 -2.70 -2.01 1483 2177 1
#> pred[7: 3] -1.76 0.37 -2.45 -2.02 -1.77 -1.51 -1.03 1895 2504 1
#> pred[7: 5] -2.11 0.20 -2.49 -2.24 -2.11 -1.96 -1.71 4216 3018 1
plot(arm_pred_FE_studies)
We can also produce treatment rankings, rank probabilities, and cumulative rank probabilities.
(arm_ranks <- posterior_ranks(arm_fit_FE))
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> rank[4] 3.51 0.72 2 3 3 4 5 1946 NA 1
#> rank[1] 4.63 0.77 2 5 5 5 5 2089 NA 1
#> rank[2] 1.05 0.26 1 1 1 1 2 2382 2410 1
#> rank[3] 3.51 0.92 2 3 4 4 5 2355 NA 1
#> rank[5] 2.29 0.69 1 2 2 2 4 2180 2219 1
plot(arm_ranks)
We now perform an analysis using the contrast-based data (mean differences and standard errors).
With contrast-level data giving the mean difference in off-time
reduction (diff
) and standard error (se_diff
),
we use the function set_agd_contrast()
to set up the
network.
contr_net <- set_agd_contrast(parkinsons,
study = studyn,
trt = trtn,
y = diff,
se = se_diff,
sample_size = n)
contr_net
#> A network with 7 AgD studies (contrast-based).
#>
#> -------------------------------------------------- AgD studies (contrast-based) ----
#> Study Treatment arms
#> 1 2: 1 | 3
#> 2 2: 1 | 2
#> 3 3: 4 | 1 | 2
#> 4 2: 4 | 3
#> 5 2: 4 | 3
#> 6 2: 4 | 5
#> 7 2: 4 | 5
#>
#> Outcome type: continuous
#> ------------------------------------------------------------------------------------
#> Total number of treatments: 5
#> Total number of studies: 7
#> Reference treatment is: 4
#> Network is connected
The sample_size
argument is optional, but enables the
nodes to be weighted by sample size in the network plot.
Plot the network structure.
We fit both fixed effect (FE) and random effects (RE) models.
First, we fit a fixed effect model using the nma()
function with trt_effects = "fixed"
. We use \(\mathrm{N}(0, 100^2)\) prior distributions
for the treatment effects \(d_k\). We
can examine the range of parameter values implied by these prior
distributions with the summary()
method:
summary(normal(scale = 100))
#> A Normal prior distribution: location = 0, scale = 100.
#> 50% of the prior density lies between -67.45 and 67.45.
#> 95% of the prior density lies between -196 and 196.
The model is fitted using the nma()
function.
contr_fit_FE <- nma(contr_net,
trt_effects = "fixed",
prior_trt = normal(scale = 100))
#> Note: Setting "4" as the network reference treatment.
Basic parameter summaries are given by the print()
method:
contr_fit_FE
#> A fixed effects NMA with a normal likelihood (identity link).
#> Inference for Stan model: normal.
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> post-warmup draws per chain=1000, total post-warmup draws=4000.
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
#> d[1] 0.52 0.01 0.48 -0.43 0.18 0.53 0.85 1.44 2039 1
#> d[2] -1.30 0.01 0.53 -2.32 -1.65 -1.29 -0.94 -0.28 2133 1
#> d[3] 0.05 0.01 0.33 -0.62 -0.17 0.05 0.27 0.70 3049 1
#> d[5] -0.30 0.00 0.21 -0.71 -0.45 -0.30 -0.16 0.10 3069 1
#> lp__ -3.19 0.04 1.46 -6.82 -3.90 -2.84 -2.12 -1.42 1737 1
#>
#> Samples were drawn using NUTS(diag_e) at Mon Apr 29 16:40:20 2024.
#> For each parameter, n_eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor on split chains (at
#> convergence, Rhat=1).
The prior and posterior distributions can be compared visually using
the plot_prior_posterior()
function:
We now fit a random effects model using the nma()
function with trt_effects = "random"
. Again, we use \(\mathrm{N}(0, 100^2)\) prior distributions
for the treatment effects \(d_k\), and
we additionally use a \(\textrm{half-N}(5^2)\) prior for the
heterogeneity standard deviation \(\tau\). We can examine the range of
parameter values implied by these prior distributions with the
summary()
method:
summary(normal(scale = 100))
#> A Normal prior distribution: location = 0, scale = 100.
#> 50% of the prior density lies between -67.45 and 67.45.
#> 95% of the prior density lies between -196 and 196.
summary(half_normal(scale = 5))
#> A half-Normal prior distribution: location = 0, scale = 5.
#> 50% of the prior density lies between 0 and 3.37.
#> 95% of the prior density lies between 0 and 9.8.
Fitting the RE model
contr_fit_RE <- nma(contr_net,
seed = 1150676438,
trt_effects = "random",
prior_trt = normal(scale = 100),
prior_het = half_normal(scale = 5),
adapt_delta = 0.99)
#> Note: Setting "4" as the network reference treatment.
#> Warning: There were 5 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: Examine the pairs() plot to diagnose sampling problems
We do see a small number of divergent transition errors, which cannot
simply be removed by increasing the value of the
adapt_delta
argument (by default set to 0.95
for RE models). To diagnose, we use the pairs()
method to
investigate where in the posterior distribution these divergences are
happening (indicated by red crosses):
The divergent transitions occur in the upper tail of the heterogeneity standard deviation. In this case, with only a small number of studies, there is not very much information to estimate the heterogeneity standard deviation and the prior distribution may be too heavy-tailed. We could consider a more informative prior distribution for the heterogeneity variance to aid estimation.
Basic parameter summaries are given by the print()
method:
contr_fit_RE
#> A random effects NMA with a normal likelihood (identity link).
#> Inference for Stan model: normal.
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> post-warmup draws per chain=1000, total post-warmup draws=4000.
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
#> d[1] 0.53 0.02 0.74 -0.76 0.13 0.52 0.93 1.85 1349 1.00
#> d[2] -1.32 0.02 0.75 -2.75 -1.73 -1.32 -0.90 0.08 1655 1.00
#> d[3] 0.05 0.01 0.50 -0.93 -0.24 0.04 0.33 1.08 2018 1.00
#> d[5] -0.30 0.01 0.49 -1.18 -0.52 -0.31 -0.10 0.67 1461 1.00
#> lp__ -8.15 0.08 2.80 -14.25 -9.84 -7.89 -6.17 -3.37 1259 1.00
#> tau 0.42 0.02 0.45 0.02 0.13 0.29 0.55 1.67 493 1.01
#>
#> Samples were drawn using NUTS(diag_e) at Mon Apr 29 16:40:30 2024.
#> For each parameter, n_eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor on split chains (at
#> convergence, Rhat=1).
By default, summaries of the study-specific relative effects \(\delta_{jk}\) are hidden, but could be
examined by changing the pars
argument:
The prior and posterior distributions can be compared visually using
the plot_prior_posterior()
function:
Model fit can be checked using the dic()
function:
(contr_dic_FE <- dic(contr_fit_FE))
#> Residual deviance: 6.4 (on 8 data points)
#> pD: 4.1
#> DIC: 10.5
(contr_dic_RE <- dic(contr_fit_RE))
#> Residual deviance: 6.6 (on 8 data points)
#> pD: 5.4
#> DIC: 12
Both models fit the data well, having posterior mean residual deviance close to the number of data points. The DIC is similar between models, so we choose the FE model based on parsimony.
We can also examine the residual deviance contributions with the
corresponding plot()
method.
For comparison with Dias et al. (2011), we can produce relative effects
against placebo using the relative_effects()
function with
trt_ref = 1
:
(contr_releff_FE <- relative_effects(contr_fit_FE, trt_ref = 1))
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d[4] -0.52 0.48 -1.44 -0.85 -0.53 -0.18 0.43 2058 2033 1
#> d[2] -1.81 0.33 -2.47 -2.03 -1.81 -1.59 -1.16 4970 3270 1
#> d[3] -0.47 0.49 -1.41 -0.79 -0.47 -0.15 0.53 2877 2737 1
#> d[5] -0.82 0.53 -1.88 -1.19 -0.82 -0.45 0.22 2169 2082 1
plot(contr_releff_FE, ref_line = 0)
(contr_releff_RE <- relative_effects(contr_fit_RE, trt_ref = 1))
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d[4] -0.53 0.74 -1.85 -0.93 -0.52 -0.13 0.76 1918 1301 1
#> d[2] -1.85 0.53 -2.94 -2.14 -1.85 -1.55 -0.83 2862 1173 1
#> d[3] -0.48 0.72 -1.83 -0.89 -0.49 -0.09 0.90 2249 1142 1
#> d[5] -0.83 0.96 -2.41 -1.29 -0.84 -0.37 0.70 1971 1443 1
plot(contr_releff_RE, ref_line = 0)
Following Dias et al. (2011), we produce absolute predictions of
the mean off-time reduction on each treatment assuming a Normal
distribution for the outcomes on treatment 1 (placebo) with mean \(-0.73\) and precision \(21\). We use the predict()
method, where the baseline
argument takes a
distr()
distribution object with which we specify the
corresponding Normal distribution, and we specify
baseline_trt = 1
to indicate that the baseline distribution
corresponds to treatment 1. (Strictly speaking,
type = "response"
is unnecessary here, since the identity
link function was used.)
contr_pred_FE <- predict(contr_fit_FE,
baseline = distr(qnorm, mean = -0.73, sd = 21^-0.5),
type = "response",
baseline_trt = 1)
contr_pred_FE
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[4] -1.25 0.53 -2.29 -1.61 -1.25 -0.88 -0.20 2225 2535 1
#> pred[1] -0.73 0.22 -1.16 -0.88 -0.73 -0.58 -0.30 3988 3629 1
#> pred[2] -2.54 0.40 -3.32 -2.81 -2.55 -2.27 -1.76 4703 3604 1
#> pred[3] -1.20 0.53 -2.23 -1.56 -1.19 -0.83 -0.16 2933 3110 1
#> pred[5] -1.55 0.58 -2.68 -1.94 -1.56 -1.16 -0.45 2319 2379 1
plot(contr_pred_FE)
contr_pred_RE <- predict(contr_fit_RE,
baseline = distr(qnorm, mean = -0.73, sd = 21^-0.5),
type = "response",
baseline_trt = 1)
contr_pred_RE
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[4] -1.26 0.77 -2.67 -1.68 -1.27 -0.84 0.12 1995 1516 1
#> pred[1] -0.73 0.22 -1.16 -0.88 -0.73 -0.59 -0.31 3715 3592 1
#> pred[2] -2.58 0.57 -3.75 -2.91 -2.58 -2.25 -1.46 2808 1235 1
#> pred[3] -1.21 0.75 -2.62 -1.66 -1.23 -0.80 0.22 2275 1195 1
#> pred[5] -1.56 0.98 -3.17 -2.06 -1.57 -1.09 0.05 2050 1535 1
plot(contr_pred_RE)
If the baseline
argument is omitted an error will be
raised, as there are no study baselines estimated in this network.
We can also produce treatment rankings, rank probabilities, and cumulative rank probabilities.
(contr_ranks <- posterior_ranks(contr_fit_FE))
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> rank[4] 3.50 0.72 2 3 3 4 5 2582 NA 1
#> rank[1] 4.63 0.78 2 5 5 5 5 2109 NA 1
#> rank[2] 1.06 0.28 1 1 1 1 2 2410 2472 1
#> rank[3] 3.53 0.92 2 3 4 4 5 3405 NA 1
#> rank[5] 2.28 0.67 1 2 2 2 4 2284 2190 1
plot(contr_ranks)
(contr_rankprobs <- posterior_rank_probs(contr_fit_FE))
#> p_rank[1] p_rank[2] p_rank[3] p_rank[4] p_rank[5]
#> d[4] 0.00 0.05 0.48 0.38 0.08
#> d[1] 0.00 0.04 0.07 0.12 0.78
#> d[2] 0.96 0.04 0.01 0.00 0.00
#> d[3] 0.00 0.16 0.26 0.45 0.13
#> d[5] 0.04 0.72 0.18 0.05 0.01
plot(contr_rankprobs)
(contr_cumrankprobs <- posterior_rank_probs(contr_fit_FE, cumulative = TRUE))
#> p_rank[1] p_rank[2] p_rank[3] p_rank[4] p_rank[5]
#> d[4] 0.00 0.05 0.53 0.92 1
#> d[1] 0.00 0.04 0.11 0.22 1
#> d[2] 0.96 0.99 1.00 1.00 1
#> d[3] 0.00 0.16 0.43 0.87 1
#> d[5] 0.04 0.76 0.94 0.99 1
plot(contr_cumrankprobs)
We now perform an analysis where some studies contribute arm-based data, and other contribute contrast-based data. Replicating Dias et al. (2011), we consider arm-based data from studies 1-3, and contrast-based data from studies 4-7.
studies <- parkinsons$studyn
(parkinsons_arm <- parkinsons[studies %in% 1:3, ])
#> studyn trtn y se n diff se_diff
#> 1 1 1 -1.22 0.504 54 NA 0.504
#> 2 1 3 -1.53 0.439 95 -0.31 0.668
#> 3 2 1 -0.70 0.282 172 NA 0.282
#> 4 2 2 -2.40 0.258 173 -1.70 0.382
#> 5 3 1 -0.30 0.505 76 NA 0.505
#> 6 3 2 -2.60 0.510 71 -2.30 0.718
#> 7 3 4 -1.20 0.478 81 -0.90 0.695
(parkinsons_contr <- parkinsons[studies %in% 4:7, ])
#> studyn trtn y se n diff se_diff
#> 8 4 3 -0.24 0.265 128 NA 0.265
#> 9 4 4 -0.59 0.354 72 -0.35 0.442
#> 10 5 3 -0.73 0.335 80 NA 0.335
#> 11 5 4 -0.18 0.442 46 0.55 0.555
#> 12 6 4 -2.20 0.197 137 NA 0.197
#> 13 6 5 -2.50 0.190 131 -0.30 0.274
#> 14 7 4 -1.80 0.200 154 NA 0.200
#> 15 7 5 -2.10 0.250 143 -0.30 0.320
We use the functions set_agd_arm()
and
set_agd_contrast()
to set up the respective data sources
within the network, and then combine together with
combine_network()
.
mix_arm_net <- set_agd_arm(parkinsons_arm,
study = studyn,
trt = trtn,
y = y,
se = se,
sample_size = n)
mix_contr_net <- set_agd_contrast(parkinsons_contr,
study = studyn,
trt = trtn,
y = diff,
se = se_diff,
sample_size = n)
mix_net <- combine_network(mix_arm_net, mix_contr_net)
mix_net
#> A network with 3 AgD studies (arm-based), and 4 AgD studies (contrast-based).
#>
#> ------------------------------------------------------- AgD studies (arm-based) ----
#> Study Treatment arms
#> 1 2: 1 | 3
#> 2 2: 1 | 2
#> 3 3: 4 | 1 | 2
#>
#> Outcome type: continuous
#> -------------------------------------------------- AgD studies (contrast-based) ----
#> Study Treatment arms
#> 4 2: 4 | 3
#> 5 2: 4 | 3
#> 6 2: 4 | 5
#> 7 2: 4 | 5
#>
#> Outcome type: continuous
#> ------------------------------------------------------------------------------------
#> Total number of treatments: 5
#> Total number of studies: 7
#> Reference treatment is: 4
#> Network is connected
The sample_size
argument is optional, but enables the
nodes to be weighted by sample size in the network plot.
Plot the network structure.
We fit both fixed effect (FE) and random effects (RE) models.
First, we fit a fixed effect model using the nma()
function with trt_effects = "fixed"
. We use \(\mathrm{N}(0, 100^2)\) prior distributions
for the treatment effects \(d_k\) and
study-specific intercepts \(\mu_j\). We
can examine the range of parameter values implied by these prior
distributions with the summary()
method:
summary(normal(scale = 100))
#> A Normal prior distribution: location = 0, scale = 100.
#> 50% of the prior density lies between -67.45 and 67.45.
#> 95% of the prior density lies between -196 and 196.
The model is fitted using the nma()
function.
mix_fit_FE <- nma(mix_net,
trt_effects = "fixed",
prior_intercept = normal(scale = 100),
prior_trt = normal(scale = 100))
#> Note: Setting "4" as the network reference treatment.
Basic parameter summaries are given by the print()
method:
mix_fit_FE
#> A fixed effects NMA with a normal likelihood (identity link).
#> Inference for Stan model: normal.
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> post-warmup draws per chain=1000, total post-warmup draws=4000.
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
#> d[1] 0.54 0.01 0.50 -0.45 0.20 0.53 0.87 1.52 1351 1
#> d[2] -1.27 0.01 0.53 -2.33 -1.62 -1.27 -0.92 -0.21 1452 1
#> d[3] 0.05 0.01 0.33 -0.56 -0.16 0.05 0.27 0.70 2384 1
#> d[5] -0.29 0.00 0.20 -0.68 -0.42 -0.29 -0.16 0.11 3047 1
#> lp__ -4.69 0.05 1.94 -9.39 -5.70 -4.36 -3.26 -1.99 1589 1
#>
#> Samples were drawn using NUTS(diag_e) at Mon Apr 29 16:40:45 2024.
#> For each parameter, n_eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor on split chains (at
#> convergence, Rhat=1).
By default, summaries of the study-specific intercepts \(\mu_j\) are hidden, but could be examined
by changing the pars
argument:
The prior and posterior distributions can be compared visually using
the plot_prior_posterior()
function:
We now fit a random effects model using the nma()
function with trt_effects = "random"
. Again, we use \(\mathrm{N}(0, 100^2)\) prior distributions
for the treatment effects \(d_k\) and
study-specific intercepts \(\mu_j\),
and we additionally use a \(\textrm{half-N}(5^2)\) prior for the
heterogeneity standard deviation \(\tau\). We can examine the range of
parameter values implied by these prior distributions with the
summary()
method:
summary(normal(scale = 100))
#> A Normal prior distribution: location = 0, scale = 100.
#> 50% of the prior density lies between -67.45 and 67.45.
#> 95% of the prior density lies between -196 and 196.
summary(half_normal(scale = 5))
#> A half-Normal prior distribution: location = 0, scale = 5.
#> 50% of the prior density lies between 0 and 3.37.
#> 95% of the prior density lies between 0 and 9.8.
Fitting the RE model
mix_fit_RE <- nma(mix_net,
seed = 437219664,
trt_effects = "random",
prior_intercept = normal(scale = 100),
prior_trt = normal(scale = 100),
prior_het = half_normal(scale = 5),
adapt_delta = 0.99)
#> Note: Setting "4" as the network reference treatment.
#> Warning: There were 1 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: Examine the pairs() plot to diagnose sampling problems
We do see a small number of divergent transition errors, which cannot
simply be removed by increasing the value of the
adapt_delta
argument (by default set to 0.95
for RE models). To diagnose, we use the pairs()
method to
investigate where in the posterior distribution these divergences are
happening (indicated by red crosses):
The divergent transitions occur in the upper tail of the heterogeneity standard deviation. In this case, with only a small number of studies, there is not very much information to estimate the heterogeneity standard deviation and the prior distribution may be too heavy-tailed. We could consider a more informative prior distribution for the heterogeneity variance to aid estimation.
Basic parameter summaries are given by the print()
method:
mix_fit_RE
#> A random effects NMA with a normal likelihood (identity link).
#> Inference for Stan model: normal.
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> post-warmup draws per chain=1000, total post-warmup draws=4000.
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
#> d[1] 0.54 0.01 0.62 -0.70 0.16 0.54 0.93 1.74 2026 1.00
#> d[2] -1.30 0.02 0.69 -2.71 -1.72 -1.29 -0.87 0.02 2090 1.00
#> d[3] 0.01 0.01 0.47 -0.95 -0.26 0.02 0.30 0.90 2852 1.00
#> d[5] -0.29 0.01 0.42 -1.14 -0.50 -0.30 -0.09 0.53 2405 1.00
#> lp__ -10.64 0.09 3.25 -17.61 -12.61 -10.33 -8.33 -5.14 1183 1.00
#> tau 0.39 0.01 0.38 0.02 0.13 0.29 0.53 1.42 646 1.01
#>
#> Samples were drawn using NUTS(diag_e) at Mon Apr 29 16:40:57 2024.
#> For each parameter, n_eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor on split chains (at
#> convergence, Rhat=1).
By default, summaries of the study-specific intercepts \(\mu_j\) and study-specific relative effects
\(\delta_{jk}\) are hidden, but could
be examined by changing the pars
argument:
The prior and posterior distributions can be compared visually using
the plot_prior_posterior()
function:
Model fit can be checked using the dic()
function:
(mix_dic_FE <- dic(mix_fit_FE))
#> Residual deviance: 9.4 (on 11 data points)
#> pD: 7.1
#> DIC: 16.5
(mix_dic_RE <- dic(mix_fit_RE))
#> Residual deviance: 9.5 (on 11 data points)
#> pD: 8.4
#> DIC: 17.9
Both models fit the data well, having posterior mean residual deviance close to the number of data points. The DIC is similar between models, so we choose the FE model based on parsimony.
We can also examine the residual deviance contributions with the
corresponding plot()
method.
For comparison with Dias et al. (2011), we can produce relative effects
against placebo using the relative_effects()
function with
trt_ref = 1
:
(mix_releff_FE <- relative_effects(mix_fit_FE, trt_ref = 1))
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d[4] -0.54 0.50 -1.52 -0.87 -0.53 -0.20 0.45 1362 1865 1
#> d[2] -1.81 0.34 -2.49 -2.03 -1.80 -1.58 -1.13 5688 3158 1
#> d[3] -0.48 0.50 -1.45 -0.82 -0.48 -0.14 0.48 2201 2871 1
#> d[5] -0.83 0.53 -1.89 -1.18 -0.84 -0.47 0.23 1471 2375 1
plot(mix_releff_FE, ref_line = 0)
(mix_releff_RE <- relative_effects(mix_fit_RE, trt_ref = 1))
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d[4] -0.54 0.62 -1.74 -0.93 -0.54 -0.16 0.70 2009 2208 1
#> d[2] -1.83 0.50 -2.84 -2.13 -1.83 -1.54 -0.83 4185 2461 1
#> d[3] -0.53 0.64 -1.81 -0.90 -0.53 -0.14 0.73 2992 2498 1
#> d[5] -0.83 0.75 -2.36 -1.28 -0.83 -0.40 0.74 2220 1883 1
plot(mix_releff_RE, ref_line = 0)
Following Dias et al. (2011), we produce absolute predictions of
the mean off-time reduction on each treatment assuming a Normal
distribution for the outcomes on treatment 1 (placebo) with mean \(-0.73\) and precision \(21\). We use the predict()
method, where the baseline
argument takes a
distr()
distribution object with which we specify the
corresponding Normal distribution, and we specify
baseline_trt = 1
to indicate that the baseline distribution
corresponds to treatment 1. (Strictly speaking,
type = "response"
is unnecessary here, since the identity
link function was used.)
mix_pred_FE <- predict(mix_fit_FE,
baseline = distr(qnorm, mean = -0.73, sd = 21^-0.5),
type = "response",
baseline_trt = 1)
mix_pred_FE
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[4] -1.26 0.54 -2.28 -1.62 -1.26 -0.90 -0.20 1437 2402 1
#> pred[1] -0.72 0.22 -1.14 -0.87 -0.72 -0.58 -0.29 3556 3638 1
#> pred[2] -2.53 0.40 -3.33 -2.79 -2.53 -2.25 -1.78 4946 3640 1
#> pred[3] -1.20 0.54 -2.24 -1.56 -1.21 -0.83 -0.14 2203 2910 1
#> pred[5] -1.55 0.57 -2.67 -1.93 -1.56 -1.16 -0.43 1532 2360 1
plot(mix_pred_FE)
mix_pred_RE <- predict(mix_fit_RE,
baseline = distr(qnorm, mean = -0.73, sd = 21^-0.5),
type = "response",
baseline_trt = 1)
mix_pred_RE
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[4] -1.27 0.66 -2.55 -1.69 -1.26 -0.86 0.04 2089 2170 1
#> pred[1] -0.73 0.22 -1.17 -0.88 -0.73 -0.58 -0.31 4051 3817 1
#> pred[2] -2.56 0.55 -3.68 -2.90 -2.56 -2.22 -1.47 4127 2529 1
#> pred[3] -1.25 0.67 -2.60 -1.67 -1.26 -0.84 0.06 3027 2404 1
#> pred[5] -1.56 0.78 -3.19 -2.03 -1.55 -1.10 0.02 2234 2132 1
plot(mix_pred_RE)
If the baseline
argument is omitted, predictions of mean
off-time reduction will be produced for every arm-based study
in the network based on their estimated baseline response \(\mu_j\):
mix_pred_FE_studies <- predict(mix_fit_FE, type = "response")
mix_pred_FE_studies
#> ---------------------------------------------------------------------- Study: 1 ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[1: 4] -1.66 0.46 -2.59 -1.96 -1.67 -1.34 -0.76 1906 2750 1
#> pred[1: 1] -1.13 0.44 -1.99 -1.42 -1.12 -0.83 -0.27 3421 3183 1
#> pred[1: 2] -2.93 0.52 -3.96 -3.29 -2.93 -2.58 -1.90 3322 2785 1
#> pred[1: 3] -1.61 0.40 -2.39 -1.88 -1.61 -1.33 -0.83 3506 3107 1
#> pred[1: 5] -1.95 0.51 -2.97 -2.28 -1.95 -1.62 -0.96 2057 2618 1
#>
#> ---------------------------------------------------------------------- Study: 2 ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[2: 4] -1.18 0.53 -2.23 -1.53 -1.18 -0.83 -0.15 1384 2051 1
#> pred[2: 1] -0.64 0.26 -1.15 -0.82 -0.64 -0.47 -0.12 4802 3488 1
#> pred[2: 2] -2.45 0.25 -2.93 -2.61 -2.45 -2.29 -1.96 4260 3056 1
#> pred[2: 3] -1.13 0.54 -2.16 -1.49 -1.12 -0.77 -0.06 2016 2729 1
#> pred[2: 5] -1.47 0.56 -2.57 -1.84 -1.48 -1.09 -0.37 1495 2249 1
#>
#> ---------------------------------------------------------------------- Study: 3 ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[3: 4] -1.13 0.42 -1.93 -1.41 -1.12 -0.85 -0.30 1680 2691 1
#> pred[3: 1] -0.59 0.36 -1.33 -0.83 -0.58 -0.35 0.09 3847 3220 1
#> pred[3: 2] -2.40 0.38 -3.16 -2.65 -2.40 -2.15 -1.63 4053 3307 1
#> pred[3: 3] -1.07 0.46 -1.98 -1.38 -1.07 -0.76 -0.16 2690 2739 1
#> pred[3: 5] -1.42 0.47 -2.33 -1.74 -1.41 -1.10 -0.52 1942 2711 1
plot(mix_pred_FE_studies)
We can also produce treatment rankings, rank probabilities, and cumulative rank probabilities.
(mix_ranks <- posterior_ranks(mix_fit_FE))
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> rank[4] 3.49 0.71 2 3 3 4 5 2091 NA 1
#> rank[1] 4.63 0.79 2 5 5 5 5 2052 NA 1
#> rank[2] 1.06 0.29 1 1 1 1 2 2240 2381 1
#> rank[3] 3.54 0.93 2 3 4 4 5 2898 NA 1
#> rank[5] 2.28 0.67 1 2 2 2 4 2131 2344 1
plot(mix_ranks)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.