The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(mtb)
It’s common to have observations that were measured longitudinally. Here are some functions that could present observations measured over time.
This is a basic example which shows you how to plot intervals of events with group labels at the beginning of individual intervals.
= data.frame( id=paste('ID', c(seq(1,5), seq(1,5)),sep=""), idn=c(seq(1,5),seq(1,5)), start=1800*seq(1,10)/3, end=1800*(seq(1,10)/3+seq(2,-2)), label=rep(c('A','B'),5) )
dt
dt#> id idn start end label
#> 1 ID1 1 600 4200 A
#> 2 ID2 2 1200 3000 B
#> 3 ID3 3 1800 1800 A
#> 4 ID4 4 2400 600 B
#> 5 ID5 5 3000 -600 A
#> 6 ID1 1 3600 7200 B
#> 7 ID2 2 4200 6000 A
#> 8 ID3 3 4800 4800 B
#> 9 ID4 4 5400 3600 A
#> 10 ID5 5 6000 2400 B
=time_plot_interval( dt, xlab='Time', ylab='ID', legend_title='Group', arrow_wt=2, arrow_color='gray')
p p
There is an existing function vistime::gg_vistime()
that
creates plots for time periods or single time points. There is also an
article by Ben Alex Keen that uses ggplot2
for plotting a
series of events.
The time_plot_event()
function creates a simplified
timeline plot.
= data.frame( id=c(rep('Sous Chef',3), rep('Both',3), rep('Chef',4)), idn=c(rep(1,3),rep(-1,3), rep(2,4)), start=1800*c(0,1,2, 0.5, 1.2, 3, 1,2,3,4), end=1800*c(3.5,NA,3, 2, 6, NA, 2,3.5,3, 3.5),
dt label=c('Turkey', 'Watch Temp', 'Gravy', 'Stuffing', 'Whipped Cream', 'Cookie', 'Cranberry', 'Potato', 'Green Bean', 'Pumpkin Pie'), labelend=c('', '', '~~?', '->>', 'not shown', '', '', '', '||', '->X'), color=c('Oven', 'Other', 'Stove','Oven','Other','Oven','Stove','Oven','Oven','Oven' ), type=c('b', 'p', 'i','i','p','p','p','b','i','i' ) )
1:5,]
dt[#> id idn start end label labelend color type
#> 1 Sous Chef 1 0 6300 Turkey Oven b
#> 2 Sous Chef 1 1800 NA Watch Temp Other p
#> 3 Sous Chef 1 3600 5400 Gravy ~~? Stove i
#> 4 Both -1 900 3600 Stuffing ->> Oven i
#> 5 Both -1 2160 10800 Whipped Cream not shown Other p
time_plot_event( dt )
Note that the compact
option can reduce the use of
vertical spaces. However, to avoid reversed interval like
event-10
, the input data set should have start time <
end time.
time_plot_event( dt, compact=TRUE )
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.