The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

Title: Machine-Readable Data Analysis Results with Function Wrappers
Version: 1.0.0
Description: You can use the set of wrappers for analytical schemata to reduce the effort in writing machine-readable data. The set of all-in-one wrappers will cover widely used functions from data analysis packages.
License: MIT + file LICENSE
Encoding: UTF-8
RoxygenNote: 7.2.3
URL: https://gitlab.com/TIBHannover/lki/knowledge-loom/mrap-r
BugReports: https://gitlab.com/TIBHannover/lki/knowledge-loom/mrap-r/-/issues
Imports: dtreg, jsonlite, stringr
Suggests: knitr, lme4, rmarkdown, testthat (≥ 3.0.0)
Config/testthat/edition: 3
VignetteBuilder: knitr
NeedsCompilation: no
Packaged: 2025-11-20 17:43:48 UTC; LezhninaO
Author: Olga Lezhnina ORCID iD [aut, cre], Manuel Prinz ORCID iD [aut], Markus Stocker ORCID iD [aut], Open Research Knowledge Graph Project and Contributors [cph]
Maintainer: Olga Lezhnina <olga.lezhnina@tib.eu>
Repository: CRAN
Date/Publication: 2025-11-25 07:00:08 UTC

mrap: Machine-Readable Data Analysis Results with Function Wrappers

Description

You can use the set of wrappers for analytical schemata to reduce the effort in writing machine-readable data. The set of all-in-one wrappers will cover widely used functions from data analysis packages.

Author(s)

Maintainer: Olga Lezhnina olga.lezhnina@tib.eu (ORCID)

Authors:

Other contributors:

See Also

Useful links:


Create an algorithm_evaluation instance

Description

Create an algorithm_evaluation instance

Usage

algorithm_evaluation(code_string, input_data, named_list_results)

Arguments

code_string

A line of code as a string, or "N/A" if not given

input_data

A data frame, a named list, or a URL as a string

named_list_results

A named list with metrics and values

Value

An algorithm_evaluation instance

Examples

res <- list(F1= 0.46, recall = 0.51)
inst_ae <- algorithm_evaluation("N/A", "data_url", res)

Create a class_discovery instance

Description

Create a class_discovery instance

Usage

class_discovery(code_string, input_data, test_results)

Arguments

code_string

A line of code as a string, or "N/A" if not given

input_data

A data frame, a named list, or a URL as a string

test_results

A data frame or a list of data frames

Value

A class_discovery instance

Examples

clust_data <- iris[-5]
res <- data.frame(result_1 = 1, result_2 = 2)
inst_cd <- class_discovery(
"stats::kmeans(clust_data, 3)",
iris,
res
)

Create a class_prediction instance

Description

Create a class_prediction instance

Usage

class_prediction(code_string, input_data, test_results)

Arguments

code_string

A line of code as a string, or "N/A" if not given

input_data

A data frame, a named list, or a URL as a string

test_results

A data frame or a list of data frames

Value

A class_prediction instance

Examples

res <- data.frame(result_1 = 1, result_2 = 2)
inst_cp <- class_prediction(
"stats::glm(Species ~ Petal.Width + Petal.Length, family='binomial', iris)",
iris,
res
)

Create a correlation_analysis instance

Description

Create a correlation_analysis instance

Usage

correlation_analysis(code_string, input_data, test_results)

Arguments

code_string

A line of code as a string, or "N/A" if not given

input_data

A data frame, a named list, or a URL as a string

test_results

A data frame or a list of data frames

Value

A correlation_analysis instance

Examples

res <- data.frame(result_1 = 1, result_2 = 2)
inst_ca <- correlation_analysis(
"stats::cor.test(iris$Petal.Length, iris$Sepal.Length)",
iris,
res
)

Create a data_analysis instance

Description

Create a data_analysis instance

Usage

data_analysis(instances, code_reference = NULL)

Arguments

instances

Analytic instance or a list of instances

code_reference

A URL of the code implementing data analysis

Value

A data analysis instance

Examples

res <- data.frame(mean = 3.758)
inst_ds <- descriptive_statistics(
"base::mean(iris$Petal.Length)",
iris,
res
)
inst_da <- data_analysis(inst_ds)

Create a descriptive_statistics instance

Description

Create a descriptive_statistics instance

Usage

descriptive_statistics(code_string, input_data, test_results)

Arguments

code_string

A line of code as a string, or "N/A" if not given

input_data

A data frame, a named list, or a URL as a string

test_results

A data frame or a list of data frames

Value

A descriptive_statistics instance

Examples

res <- data.frame(mean = 3.758)
inst_ds <- descriptive_statistics(
"base::mean(iris$Petal.Length)",
iris,
res
)

Create a factor_analysis instance

Description

Create a factor_analysis instance

Usage

factor_analysis(code_string, input_data, test_results)

Arguments

code_string

A line of code as a string, or "N/A" if not given

input_data

A data frame, a named list, or a URL as a string

test_results

A data frame or a list of data frames

Value

A factor_analysis instance

Examples

fa_data <- iris[-5]
res <- data.frame(result_1 = 1, result_2 = 2)
inst_fa <- factor_analysis(
"stats::princomp(fa_data)",
iris,
res
)

Create a group_comparison instance

Description

Create a group_comparison instance

Usage

group_comparison(code_string, input_data, test_results)

Arguments

code_string

A line of code as a string, or "N/A" if not given

input_data

A data frame, a named list, or a URL as a string

test_results

A data frame or a list of data frames

Value

A group_comparison instance

Examples

res <- data.frame(result_1 = 1, result_2 = 2)
inst_gc <- group_comparison(
"stats::aov(Petal.Length ~ Species, data = iris)",
iris,
res
)

Create a multilevel_analysis instance

Description

Create a multilevel_analysis instance

Usage

multilevel_analysis(code_string, input_data, test_results)

Arguments

code_string

A line of code as a string, or "N/A" if not given

input_data

A data frame, a named list, or a URL as a string

test_results

A data frame or a list of data frames

Value

A multilevel_analysis instance

Examples

code_string <- "lme4::lmer(math ~ homework + (1 | schid))"
res <- data.frame(result_1 = 1, result_2 = 2)
inst <- multilevel_analysis(code_string, "data_url", res)

Create a regression_analysis instance

Description

Create a regression_analysis instance

Usage

regression_analysis(code_string, input_data, test_results)

Arguments

code_string

A line of code as a string, or "N/A" if not given

input_data

A data frame, a named list, or a URL as a string

test_results

A data frame or a list of data frames

Value

A regression_analysis instance

Examples

res <- data.frame(result_1 = 1, result_2 = 2)
inst_ra <- regression_analysis(
"stats::lm(Petal.Length ~ Sepal.Length, data = iris)",
iris,
res
)

Wrap stats::aov function

Description

Wrap stats::aov function

Usage

stats_aov(...)

Arguments

...

the same arguments as in the wrapped function

Value

a list of ANOVA object and R6 class instance

Examples

results <- stats_aov(Petal.Length ~ Species, data = iris)


Write an instance in JSON-LD format

Description

This function is imported from dtreg for ease-of-use

Usage

to_jsonld(instance)

Arguments

instance

An instance of an R6 class

Value

JSON string in JSON-LD format

Examples

res <- data.frame(mean = 3.758)
inst_ds <- descriptive_statistics(
"base::mean(iris$Petal.Length)",
iris,
res
)
json <- to_jsonld(inst_ds)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.