Package ‘mrangr’

January 19, 2026
Title Mechanistic Metacommunity Simulator
Version 1.0.0

Description Flexible, mechanistic, and spatially explicit simulator of
metacommunities. It extends our previous package - 'rangr' (see
<https://github.com/ropensci/rangr>), which implemented a mechanistic
virtual species simulator integrating population dynamics and
dispersal. The 'mrangr' package adds the ability to simulate multiple
species interacting through an asymmetric matrix of pairwise
relationships, allowing users to model all types of biotic
interactions — competitive, facilitative, or neutral — within
spatially explicit virtual environments.

License MIT + file LICENSE
Depends R (>=3.5.0)

Imports assertthat, FieldSimR, graphics, grDevices, gstat, methods,
mgcv, parallel, rangr, RColorBrewer, stats, terra, utils

Suggests bookdown, knitr, rmarkdown, testthat (>= 3.0.0), tools
VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

NeedsCompilation no

Author Katarzyna Markowska [aut, cre, cph],
Lechostaw Kuczynski [aut, cph]

Maintainer Katarzyna Markowska <katarzyna.markowska@amu.edu.pl>
Repository CRAN
Date/Publication 2026-01-19 18:20:13 UTC

https://github.com/ropensci/rangr

2 a_eg

Contents
X P 2
COMMUNILY_ €8 . . . v v v v et e e e e e e e e e e e e e e e e e 3
diagonal e 3
GEL_COMMUNILY o v vttt e e e e e e e e e e e e e 4
get_simulated_com L 4
0o P 5
initialise_como e 6
initialise_inv oL e 8
K_omap_eg.tif e 9
Kosim . . . o e 10
nl_map_eg.tif 11
plot.sim_com_results e e e 11
PIOL_SETIES o o o e e e e e 12
print.sim_com_data L. e e e 13
print.sim_com_resultS L e 14
print.summary.sim_com_data 15
print.summary.sim_com_results 15
SELZETO . . v v i i e e e e e e e e e e e 16
simulated_com_eg e e e 17
SIM_COM . . . o v v vttt et et e e e e e e e e 17
summary.sim_com_data L. L e e e 18
summary.sim_com_results Lo e 19
to_rast.sim_com_resultsl 19
update.sim_com_data e e 20
virtual_ecologist L e e e 22

Index 25

a_eg Example Of Interaction Coefficients Matrix
Description

A square numeric matrix representing interaction coefficients between species. a_ij is the per-
capita interaction strength of species j on species i. It expresses the change in carrying capacity

of sp
K_ma

Usage

a_eg

Format

Anu

ecies i by a single individual of species j. This data is compatible with n1_map_eg.tif and
p_eg.tif maps.

meric matrix with 4 rows and 4 columns containing interaction coefficients.

community_eg 3

Source

Data generated in-house to serve as an example

community_eg Example Community Data

Description

A pre-initialized sim_com_data object used to demonstrate community structure and simulation
input. It contains 4 species with spatially correlated carrying capacity and initial abundance maps.

This object can be accessed via the get_community function.

Format

An object of class sim_com_data from the mrangr package generated using initialise_com.

Source

Data generated in-house to serve as an example

See Also

get_community, initialise_com

diagonal Compute Maximum Possible Distance for a Raster Object

Description

Calculates the diagonal length of a raster’s extent, accounting for the coordinate reference system.

Usage

diagonal (x)

Arguments

X A raster object.

Value

The diagonal distance in meteres.

4 get_simulated_com

Examples

library(terra)

Read data from the mrangr package
K_map <- rast(system.file("input_maps/K_map_eg.tif", package = "mrangr"))

diagonal (K_map)

get_community Load Example Community Object

Description

Loads a pre-simulated example of a spatial community object, useful for demos and testing.

Usage

get_community()

Value

An object of class sim_com_data containing community structure, simulation parameters, species-
specific carrying capacity and initial abundance maps.

Examples
community <- get_community()
summary (community)
get_simulated_com Load Example Simulated Community Results
Description

Loads a pre-run simulation output, based on the example community data. Useful for examples,
unit tests, or visualization.

Usage

get_simulated_com()

Value

An object of class sim_com_results containing simulation output for a community over time.

grf 5

Examples

sim <- get_simulated_com()
plot(sim)

grf Generate a Gaussian Random Field

Description

Generates a Gaussian random field (GRF) based on the Matern model of spatial autocorrelation.

Usage
grf(x, range, fun = "scale", ...)
Arguments
X A template raster of class SpatRaster (from the terra package).
range Numeric. The range parameter of the variogram model (in spatial units of x
raster).
fun A function to apply to the generated values (default is scale to standardize the
GREF).
Additional arguments passed to the function specified in fun.
Value

A SpatRaster object containing the generated Gaussian random field.

Examples

library(terra)

r <- rast(nrows = 100, ncols = 100, xmin = @, xmax = 100, ymin = @, ymax = 100)
grf_field <- grf(r, range = 30)

plot(grf_field)

initialise_com

initialise_com

Initialise Community Simulation Data

Description

Prepares community-level input data for a spatial simulation. This function builds on rangr: :initialise()

by organising inputs for multiple species and their interactions.

Usage

initialise_com(

n1_map = NULL,

K_map,
r,
a)

dlist = NULL,

invasion = NULL,
use_names_K_map = TRUE,

Arguments

n1_map

K_map

r

dlist

invasion

use_names_K_map

A SpatRaster with one layer per species representing the initial abundance. If
NULL (default), random initial values will be generated from a Poisson distribu-
tion using K_map.

A SpatRaster with one layer per species representing carrying capacities.

A numeric vector of intrinsic growth rates. It can be a single-element vector (if

all species have the same intrinsic growth rate) or a vector of length equal to the
number of species in the community.

A square numeric matrix representing interaction coefficients between species.
Each element a_1ij is the per-capita interaction strength of species j on species
i. Itexpresses the change in carrying capacity of species i by a single individual
of species j. The diagonal must be NA and the matrix must be a square matrix of
order equal to the number of species. It does not have to be symmetric.

Optional. A list; target cells at a specified distance calculated for every cell
within the study area.

Optional. A named list of specifying invasion configuration (can be prepared
using initialise_inv). Must contain:

invaders Integer vector of invading species indices.

propagule_size Number of individuals introduced per invasion event.
invasion_times Matrix of invasion times, with one row per invader.

Logical. If TRUE, the layer names of K_map are used as species names. If FALSE,
species are numbered sequentially (1:number_of_species). Defaults to TRUE.

initialise_com 7

Additional named arguments passed to initialise(). Each must be either
length 1 or equal to the number of species.

kernel_args Optional. A list of lists, each containing named arguments for the
corresponding species’ kernel function. Must be the same length as number
of species.

Value

A list of class sim_com_data containing:

spec_data A list of sim_data objects (one per species) returned by initialise().

nspec The number of species.

a The interaction matrix.

r Intrinsic growth rate(s).

nl_map Initial abundance maps (wrapped SpatRaster).

K_map Carrying capacity maps (wrapped SpatRaster).

max_dist The maximum dispersal distance across all species.

dlist A list; target cells at a specified distance calculated for every cell within the study area.
invasion Invasion configuration (if any).

call The matched call.

Examples

library(terra)
Read data from the mrangr package

Input maps
K_map <- rast(system.file("input_maps/K_map_eg.tif", package = "mrangr"))
n1_map <- rast(system.file("input_maps/n1_map_eg.tif", package = "mrangr"))

Interaction coefficients matrix
a <- a_eg

Initialise simulation parameters
community_01 <-

initialise_com(

K_map = K_map,

ni_map = nl_map,

r=1.1,

a = a,

rate = 0.002)

With invaders

invasion <- initialise_inv(
invaders = c(1, 3),
invasion_times = c(2, 5))

community_@2 <-

K_map = K_map,

r=1.1,
a=a,
rate = 0.002,

initialise_inv

initialise_com(

invasion = invasion)

Custom kernel

function

abs_rnorm <- function(n, mean, sd) {
abs(rnorm(n, mean = mean, sd = sd))

}

community_03 <-

K_map = K_map,

initialise_com(

nl_map = nl_map,
r=-c(.1, 1.05, 1.2, 1),

a=a,
kernel_fun = c("rexp”, "rexp"”, "abs_rnorm”, "abs_rnorm"),
kernel_args = list(

list(rate = 0.002),

list(rate = 0.001),

list(mean = @, sd = 1000),

list(mean = @, sd = 2000))

initialise_inv

Initialise Invasion Parameters

Description

Prepares a list of invasion configuration details, including the identifiers of the invading species,
the times of invasion and the number of individuals introduced at each event. Result of this helper
function is designed to be passed to initialise_com() as invasion argument.

Usage

initialise_inv(invaders, invasion_times, propagule_size = 1)

Arguments

invaders

invasion_times

propagule_size

An integer vector of species indices indicating which species are invaders.These
indices should match the species layers in the input maps (n1_map and K_map).

A matrix or vector specifying when each invader enters the system. If a vector
is provided, it is assumed to apply to all invaders. If a matrix, it must have one
row per invader and columns corresponding to invasion events.

A numeric scalar specifying the number of individuals introduced at each inva-
sion time. Defaults to 1.

K_map_eg.tif 9

Value

A named list with the following components:

invaders Integer vector of invading species indices.
propagule_size Number of individuals introduced per invasion event.

invasion_times Matrix of invasion times, with one row per invader.

Examples

Define invaders and invasion times

initialise_inv(
invaders = c(1, 3),
invasion_times = matrix(c(5, 10, 5, 20), nrow = 2, byrow = TRUE),
propagule_size = 10

)

Uniform invasion times across all invaders
initialise_inv(

invaders = c(2, 4),

invasion_times = c(5, 10, 15)

K_map_eg.tif Example Of Carrying Capacity Map

Description

SpatRaster object with 4 layer that can be passed to initialise_com a as simulation (sim_com)
starting point.

This map is compatible with n1_map_eg. tif.

Format
SpatRaster object with 4 layers, each with 15 rows and 15 columns. Contains numeric values
representing carrying capacity and NA’s indicating unsuitable areas.

Source

Data generated in-house to serve as an example (using spatial autocorrelation).

Examples

terra::rast(system.file("input_maps/K_map_eg.tif"”, package = "mrangr"))

10 K sim

K_sim Carrying Capacity Map Simulator

Description

Generates multiple carrying capacity maps based on spatially autocorrelated Gaussian Random
Fields (GRFs), with optional correlation between layers.

Usage
K_sim(n, id, range, cor_mat = NULL, gfun = gnorm, ...)

Arguments
n Integer. Number of maps to generate.
id A SpatRaster object used as a geographic template.
range Numeric. Spatial autocorrelation parameter passed to the grf function.
cor_mat Optional correlation matrix. If NULL, maps are generated independently.
gfun Quantile function to apply to the generated GRFs (default: gnorm).

Additional arguments passed to the quantile function gfun.
Value

A SpatRaster object with n layers, each representing a carrying capacity map.

Examples

library(terra)
library(FieldSimR)

Community parameters

nspec <- 3

nrows <- ncols <- 10

xmin <- 250000; xmax <- xmin + nrows * 1000

ymin <- 600000; ymax <- ymin + ncols * 1000

id <- rast(nrows = nrows, ncols = ncols, xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax)
crs(id) <- "epsg:2180"

plot(id)

Correlation matrix of carrying capacities
cor_mat <- matrix(c(1, 0.29, 0.32, 0.29, 1, 0.32, 0.32, 0.32, 1), nrow = nspec, ncol = nspec)
cor_mat

Generate and define the distributions and parameters of correlated carrying capacity maps

K_map <- K_sim(nspec, id, range = 20000, cor_mat = cor_mat, gfun = glnorm, meanlog = 2, sdlog = 0.5)
K_map

hist(K_map)

plot(K_map)

nl_map_eg.tif 11

nl_map_eg.tif Example Of Abundance Map At First Time Step Of The Simulation

Description

SpatRaster object with 4 layer that can be passed to initialise_com a as simulation (sim_com)
starting point.

This map is compatible with K_map_eg. tif.

Format

SpatRaster object with 4 layers, each with 15 rows and 15 columns. Contains integer values
representing abundance and NA’s indicating unsuitable areas.

Source

Data generated in-house to serve as an example.

Examples

terra::rast(system.file("input_maps/n1_map_eg.tif", package = "mrangr"))

plot.sim_com_results Plot sim_com_results Object

Description

Draws simulated abundance maps for any species at any time

Usage

S3 method for class 'sim_com_results'
plot(

X,

species = seq_len(dim(x$N_map)[4]),

time_points = x$sim_time,

type = "continuous”,

main,

range,

12

Arguments
X
species
time_points

type

main

range

Value

plot_series

An object of class sim_com_results, returned by sim_com().
Integer vector. Species ID(s) to plot.
Integer vector. Time step(s) to plot (excluding burn-in).

Character vector of length 1. Type of map: "continuous" (default), "classes" or
"interval" (case-sensitive)

Character vector. Plot titles (one for each layer)

Numeric vector of length 2. Range of values to be used for the legend (if
type = "continuous”), which by default is calculated from the N_map slot of
sim_com_results object

Further arguments passed to terra: :plot

*1If length(time_points) == 1, returns a SpatRaster with species as layers.

* If only one species is selected with multiple time points, returns a single SpatRaster.

Examples

Read simulation data from the mrangr package
simulated_com <- get_simulated_com()

Plot

plot(simulated_com)

plot_series

Community Time-Series Plot

Description

This function plots a community time-series for a given location and time.

Usage

plot_series(

obj,

x = seq(dim(obj$N_map)[1]),
y = seq(dim(obj$N_map)[2]),
time = seq(obj$sim_time),

species =

seq(dim(obj$N_map)[4]1),
trans = NULL,

print.sim_com_data 13

Arguments
obj An object of class sim_com_results.
X Indices for the x-dimension - first dimension of the obj$N_map (default: full
range).
y Indices for the y-dimension - second dimension of the obj$N_map (default: full
range).
time Indices for the time-dimension - third dimension of the obj$N_map (default: full
range).
species Indices for the species - fourth dimension of the obj$N_map (default: full range).
trans An optional function to apply to the calculated mean series before plotting (e.g.,
log, log1p). Defaults to NULL (no transformation).
Additional graphical parameters passed to plot.
Value

Invisibly returns a matrix of the mean (and possibly transformed) abundance values for each species.

Examples

Read simulation data from the mrangr package
simulated_com <- get_simulated_com()

Plot

plot_series(simulated_com)
plot_series(simulated_com, x = 5:12, y = 1:5)
plot_series(simulated_com, time = 1:5)
plot_series(simulated_com, trans = loglp)

print.sim_com_data Print sim_com_data Object

Description

Print sim_com_data Object

Usage
S3 method for class 'sim_com_data’
print(x, ...)
Arguments
X sim_com_data object; returned by the initialise_com function

further arguments passed to or from other methods; currently none specified

14 print.sim_com_results

Value

sim_com_data object is invisibly returned (the x param)

Examples

Read community data from the mrangr package
community <- get_community()

Print
print(community)

print.sim_com_results Print sim_com_results Object

Description

Print sim_com_results Object

Usage
S3 method for class 'sim_com_results'
print(x, ...)
Arguments
X sim_com_results object; returned by the sim_com function
further arguments passed to or from other methods; none specified
Value

sim_com_results object is invisibly returned (the x param)

Examples

Read simulation data from the mrangr package
simulated_com <- get_simulated_com()

Print
print(simulated_com)

print.summary.sim_com_data 15

print.summary.sim_com_data
Print summary.sim_com_data Object

Description

Print summary.sim_com_data Object

Usage
S3 method for class 'summary.sim_com_data'
print(x, ...)
Arguments
X An object of class summary.sim_com_data
Additional arguments (not used)
Value

Invisibly returns x

Examples

Read community data from the mrangr package
community <- get_community()

Print summary
sim_com_data_summary <- summary(community)
print(sim_com_data_summary)

print.summary.sim_com_results
Print summary.sim_results Object

Description

Print summary.sim_results Object

Usage

S3 method for class 'summary.sim_com_results'
print(x, ...)

16 set_zero

Arguments
X summary.sim_com_results object; returned by summary.sim_com_results
function
further arguments passed to or from other methods; currently none specified
Value
None
Examples

Read simulation data from the mrangr package
simulated_com <- get_simulated_com()

Print summary
sim_com_summary <- summary(simulated_com)
print(sim_com_summary)

set_zero Set Non-Missing Values to Zero

Description
This function takes an object and sets all non-missing values to zero, while leaving missing values
unchanged.

Usage

set_zero(x)

Arguments
X A vector or other object for which is.na() and subsetting with [] are defined
(e.g., vector, data frame, SpatRaster).
Value

An object of the same type as x with all originally non-missing elements replaced by zero.

Examples

Example with a numeric vector
vec <- c(1, 2, NA, 4, NA, 5)
set_zero(vec)

simulated_com_eg 17

simulated_com_eg Example Simulated Community Output

Description

A sim_com_results object containing results of a 20-step simulation of a 4-species community.
The simulation was generated using the community_eg object.

This object can be accessed via the get_simulated_com function.

Format

An object of class sim_com_results from the mrangr package generated using sim_com.

Source

Data generated in-house to serve as an example

See Also

get_simulated_com, plot.sim_com_results, sim_com

sim_com Simulate Community Dynamics Over Time

Description
This function simulates species interactions and population dynamics over a given period. It ac-
counts for species invasions and updates population abundances at each time step.

Usage

sim_com(obj, time, burn = @, progress_bar = TRUE)

Arguments
obj An object of class sim_com_data, as returned by initialise_com().
time Integer. Total number of simulation steps. Must be >= 2.
burn Integer. Number of initial burn-in steps to exclude from the output. Must be >=

0 and < time.

progress_bar Logical. Whether to display a progress bar during the simulation.

18 summary.sim_com_data

Value
An object of class sim_com_results, a list containing:

extinction Named logical vector indicating species that went extinct.
sim_time Integer. Duration of the output simulation (excluding burn-in).
id A SpatRaster object used as a geographic template.

N_map 4D array [rows, cols, time, species] of population abundances.

Examples

Read community data from the mrangr package
community <- get_community()

Simulation
simulated_com_01 <- sim_com(obj = community, time = 10)

Simulation with burned time steps

simulated_com_02 <- sim_com(obj = community, time = 10, burn = 3)

summary.sim_com_data Summary Of sim_com_data Object

Description

Summary Of sim_com_data Object

Usage
S3 method for class 'sim_com_data’
summary(object, ...)
Arguments
object sim_com_data object; returned by initialise_com function

further arguments passed to or from other methods; currently none used

Value

A list of class summary.sim_com_data

Examples

Read community data from the mrangr package
community <- get_community()

Summary
summary (community)

summary.sim_com_results 19

summary.sim_com_results
Summary Of sim_com_results Object

Description

Summary Of sim_com_results Object

Usage
S3 method for class 'sim_com_results'
summary (object, ...)
Arguments
object sim_com_results object; returned by sim_com function

further arguments passed to or from other methods; none specified

Value

summary.sim_com_results object

Examples

Read simulation data from the mrangr package
simulated_com <- get_simulated_com()

Summary
summary (simulated_com)

to_rast.sim_com_results
Convert sim_com_results fo SpatRaster(s)

Description

Converts simulated population abundance data from a sim_com_results object (produced by sim_com())
into SpatRaster objects.

20 update.sim_com_data

Usage

S3 method for class 'sim_com_results'
to_rast(
obj,
species = seq_len(dim(obj$N_map)[4]),
time_points = obj$sim_time,

)
Arguments
obj An object of class sim_com_results, returned by sim_com().
species Integer vector. Species ID(s) to extract.
time_points Integer vector. Time step(s) to extract (excluding burn-in).
Currently unused.
Value
o If length(time_points) == 1, returns a SpatRaster with species as layers.
e If length(time_points) > 1, returns a named list of SpatRaster objects, one per species.
* If only one species is selected with multiple time points, returns a single SpatRaster.
Examples

Read simulation data from the mrangr package
simulated_com <- get_simulated_com()

Extract one timestep, all species
r1 <- to_rast(simulated_com, time_points = 10)

Extract multiple timesteps, one species
r2 <- to_rast(simulated_com, species = 2, time_points = c(1, 5, 10))

Extract multiple timesteps, multiple species
r3 <- to_rast(simulated_com, species = c(1, 2), time_points = c(1, 5, 10))

update.sim_com_data Update sim_com_data Object

Description

Updates the parameters used to create a sim_com_data object, returned by initialise_com().

update.sim_com_data 21

Usage
S3 method for class 'sim_com_data'
update(object, ..., evaluate = TRUE)
Arguments
object A sim_com_data object, as returned by initialise_com().

Named arguments to update. These should be valid arguments to initialise_com().
If kernel_fun is updated, any associated kernel_args (if present in previous
call) will also be replaced.

evaluate Logical (default TRUE). If TRUE, the function returns the re-evaluated updated
object; if FALSE, it returns the updated function call without evaluating it.

Details

* If dispersal-related arguments such as max_dist, kernel_fun, or kernel_args are changed,
the existing dlist is removed and recalculated unless a new dlist is explicitly provided.

e If n1_map or K_map is updated, the dlist will also be removed to ensure consistency.

Value

If evaluate = TRUE, a new sim_com_data object with updated parameters. If evaluate = FALSE, a
call object representing the updated function call.

See Also

initialise_com()

Examples

library(terra)
Read data from the mrangr package

Input maps
K_map <- rast(system.file("input_maps/K_map_eg.tif", package = "mrangr"))
n1_map <- rast(system.file("input_maps/n1_map_eg.tif", package = "mrangr"))

Competition coefficients matrix
a <- a_eg

Initialise simulation parameters
community_01 <-

initialise_com(

K_map = K_map,

r=1.1,

a-=a,

rate = 0.002)

Update simulation parameters

22 virtual_ecologist

Custom kernel function
abs_rnorm <- function(n, mean, sd) {
abs(rnorm(n, mean = mean, sd = sd))

}

community_02 <- update(community_01,
kernel_fun = c("rexp”, "rexp"”, "abs_rnorm”, "abs_rnorm"),
kernel_args = list(
list(rate = 0.002),

list(rate = 0.001),
list(mean = @, sd = 1000),
list(mean = @, sd = 2000)))
virtual_ecologist Virtual Ecologist
Description

Organizes and extracts community data from a simulated community object based on one of three
sampling methods: random proportion, constant random sites, or user-provided sites.

Usage
virtual_ecologist(
obj,
type = c("random_one_layer”, "random_all_layers”, "from_data"),
sites = NULL,
prop = 0.01,
obs_error = c("rlnorm”, "rbinom"),
obs_error_param = NULL
)
Arguments
obj An object created by the sim_com() function, containing simulation data.
type character vector of length 1; describes the sampling type (case-sensitive):

* "random_one_layer" - random selection of cells for which abundances are
sampled; the same set of selected cells is used across all time steps.

e "random_all_layers” - random selection of cells for which abundances
are sampled; a new set of cells is selected for each time step.

* "from_data"” - user-defined selection of cells for which abundances are
sampled; the user is required to provide a data.frame containing three
columns: "x", "y" and "time".

sites An optional data frame specifying the sites for data extraction. This data frame

must contain three columns: x, y and time.

virtual_ecologist 23

prop A numeric value between 0 and 1. The proportion of cells to randomly sample
from the raster.

obs_error character vector of length 1; type of the distribution that defines the observa-
tion process: "rlnorm" (log-normal distribution) or "rbinom" (binomial distri-
bution).

obs_error_param
numeric vector of length 1; standard deviation (on a log scale) of the random
noise in the observation process when "rlnorm” is used, or probability of de-
tection (success) when "rbinom” is used.

Value

A data frame with 6 columns:

* id: unique cell identifier (factor)

* X, y: sampled cell coordinates

* species: species number or name
e time: sampled time step

* n: sampled abundance

Examples

Read simulated community data from the mrangr package
simulated_com <- get_simulated_com()

Option 1: Randomly sample sites (the same for each year)
sampled_data_01 <- virtual_ecologist(simulated_com)
head(sampled_data_01)

Option 2: Randomly sample sites (different for each year)
sampled_data_02 <- virtual_ecologist(simulated_com, type = "random_all_layers")
head(sampled_data_02)

Option 3: Sample sites based on user-provided data frame
custom_sites <- data.frame(
x = c(250500, 252500, 254500),
y = c(600500, 602500, 604500),
time = c(1, 10, 20)
)
sampled_data_03 <- virtual_ecologist(simulated_com, sites = custom_sites)
head(sampled_data_03)

Option 4. Add noise - "rlnorm”
sampled_data_04 <- virtual_ecologist(
simulated_com,
sites = custom_sites,
obs_error = "rlnorm”,
obs_error_param = log(1.2)
)
head(sampled_data_04)

24

Option 5. Add noise - "rbinom”
sampled_data_05 <- virtual_ecologist(
simulated_com,
sites = custom_sites,
obs_error = "rbinom"”,
obs_error_param = 0.8
)
head(sampled_data_05)

virtual_ecologist

Index

* datasets summary.sim_com_data, 18
a_eg,2 summary.sim_com_results, /6, 19
a_eg,2 terra::plot, /12

to_rast.sim_com_results, 19
community_eg, 3, 17

update.sim_com_data, 20
diagonal, 3

virtual_ecologist, 22
get_community, 3,4

get_simulated_com, 4, 17
grf,5

initialise(), 7”7
initialise_com, 3,6,9, 11,13, 18
initialise_com(), 8, 17, 20, 21
initialise_inv, 6, 8

K_map_eg.tif, 2,9, 11
K_sim, 10

nl_map_eg.tif, 2,9, 11

plot.sim_com_results, 11, 17
plot_series, 12
print.sim_com_data, 13
print.sim_com_results, 14
print.summary.sim_com_data, 15
print.summary.sim_com_results, 15

gnorm, 10

rangr::initialise(), 6
rbinom, 23
rlnorm, 23

scale, 5

set_zero, 16
sim_com, 9,11, 14, 17,17, 19
sim_com(), 12, 19, 20, 22
simulated_com_eg, 17
SpatRaster, 5, 6, 9-11, 18, 19

25

	a_eg
	community_eg
	diagonal
	get_community
	get_simulated_com
	grf
	initialise_com
	initialise_inv
	K_map_eg.tif
	K_sim
	n1_map_eg.tif
	plot.sim_com_results
	plot_series
	print.sim_com_data
	print.sim_com_results
	print.summary.sim_com_data
	print.summary.sim_com_results
	set_zero
	simulated_com_eg
	sim_com
	summary.sim_com_data
	summary.sim_com_results
	to_rast.sim_com_results
	update.sim_com_data
	virtual_ecologist
	Index

