The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
Estimating sample size and statistical power is an essential part of a good study design. This package allows users to conduct power analysis based on Monte Carlo simulations in settings in which considerations of the correlations between predictors are important. It runs power analyses given a data generative model and an inference model. It can set up a data generative model that preserves dependence structures among variables given existing data (continuous, binary, or ordinal) or high-level descriptions of the associations. Users can generate power curves to assess the trade-offs between sample size, effect size, and power of a design.
This vignette presents tutorials and examples focusing on applications for environmental mixtures studies where predictors tend to be moderately to highly correlated. It easily interfaces with several existing and newly developed analysis strategies for assessing associations between exposures to mixtures and health outcomes. However, the package is sufficiently general to facilitate power simulations in a wide variety of settings.
And the development version from GitHub with:
# install.packages("devtools")
::install_github("phuchonguyen/mpower") devtools
library(mpower)
library(dplyr)
library(magrittr)
library(tidyselect)
library(ggplot2)
To do power analysis using Monte Carlo simulations, we’ll need:
A generative model for the predictors. The predictors can be
correlated and mixed-scaled. Use MixtureModel()
.
A generative model for the outcome that describes the “true”
relationships between the predictors and outcome. Use
OutcomeModel()
.
An inference model. Ideally, this would be the same as the
generative model for the outcome. However, in practice our model can at
best approximate the “true” predictor-outcome relationships. Use
InferenceModel()
.
A “significance” criterion and threshold for the inference model. For instance, the t-test in a linear regression has its p-value as the “significance” criterion, and a common threshold for statistical significance is p-value less than 0.05.
We can manually specify the joint distribution of the predictors using univariate marginal distributions and a guess of the correlation matrix. To create four moderately associated mixed-scaled predictors:
<- diag(1, 4)
G upper.tri(G)] <- 0.6
G[lower.tri(G)] <- 0.6
G[<- mpower::MixtureModel(method = "cvine", G = G, m = 50,
xmod cvine_marginals = list(binary = "qbinom(size=1, prob=0.2)",
count = "qpois(lambda = 1)",
ordinal = "qmultinom(probs=c(0.6, 0.2, 0.2))",
categorical = "qmultinom(probs=c(0.6, 0.2, 0.2))"),
cvine_dtypes = list(categorical = "factor"))
::mplot(xmod) mpower
Since we want to create a power curve, we need to supply a list of outcome models with different “true” effect sizes:
<- list(
ymod_list ::OutcomeModel(f = "1*binary + 1*I(categorical==1)", sigma = 1, family = "gaussian"),
mpower::OutcomeModel(f = "0.5*binary + 0.5*I(categorical==1)", sigma = 1, family = "gaussian"),
mpower::OutcomeModel(f = "0.2*binary + 0.2*I(categorical==1)", sigma = 1, family = "gaussian")
mpower )
We define an overall F-test for linear regression as the inference model and the p-value as the “significance” criterion:
# Define the ftest that returns a list of significance criteria
<- function(y, x) {
ftest <- as.data.frame(cbind(y, x))
dat <- lm(y ~ ., data = dat)
lm_mod <- summary.lm(lm_mod)$fstat
fstat <- pf(fstat[1], fstat[2], fstat[3], lower.tail=F)
fpval names(fpval) <- "F-test"
return(list(pval = fpval))
}# define an InferenceModel using the F-test
<- mpower::InferenceModel(model = ftest, name = "F-test") imod
We run power analysis for sample sizes 100 and 300 with 2 cores and 100 Monte Carlo simulations:
<- mpower::sim_curve(xmod, ymod_list, imod, s = 100,
curve n = c(100, 300), cores = 2)
We can get a table of summaries and a plot of the power:
<- mpower::summary(curve , crit = "pval", thres = 0.05, how = "lesser")
curve_df #>
#> *** POWER CURVE ANALYSIS SUMMARY ***
#> Number of Monte Carlo simulations: 100
#> Number of observations in each simulation: 100 300
#> Data generating process estimated SNR (for each outcome model): 0.31 0.07 0.01
#> Inference model: F-test
#> Significance criterion: pval
#> Significance threshold: 0.05
#>
#> | | power| n| snr|
#> |:------|-----:|---:|----:|
#> |F-test | 0.99| 100| 0.31|
#> |F-test | 0.48| 100| 0.07|
#> |F-test | 0.09| 100| 0.01|
#> |F-test | 1.00| 300| 0.31|
#> |F-test | 0.94| 300| 0.07|
#> |F-test | 0.27| 300| 0.01|
::plot_summary(curve , crit = "pval", thres = 0.05, how = "lesser") mpower
We can estimate a data generative model for the predictors if we have existing data on them. For example, here we use a copy of the NHANES data from the 2015-2016 and 2017-2018 cycles.
For an estimation model, all data must be in numeric form. Categorical variables should be converted to factors with numeric categories:
data("nhanes1518")
# preprocessing step
<- c("URXCNP", "URXCOP", "URXECP", "URXHIBP",
phthalates_names "URXMBP", "URXMC1", "URXMCOH", "URXMEP", "URXMHBP", "URXMHH",
"URXMHNC", "URXMHP", "URXMIB", "URXMNP", "URXMOH", "URXMZP")
<- c("RIDAGEYR","INDHHIN2","BMXBMI","RIAGENDR")
covariates_names # Get set of complete data only. Remaining 4800 obs.
<- nhanes1518 %>%
nhanes_nona select(all_of(c(phthalates_names, covariates_names))) %>%
filter(complete.cases(.))
We use a Bayesian semi-parametric Gaussian copula for this step. See
more in the R package sbgcop
.
<- mpower::MixtureModel(method = "estimation" , data = nhanes_nona,
xmod sbg_args = list(nsamp = 1000))
mplot(xmod, split=F)$corr
<- mpower::OutcomeModel(sigma = 1, family = "gaussian",
ymod f = "0.5*RIDAGEYR + 0.3*I(RIAGENDR==1) +
0.3*URXMHH + 0.2*URXMOH + 0.2*URXMHP")
<- mpower::sim_power(xmod, ymod, imod, s=1000, n=100, snr_iter=4800,
power cores = 2, errorhandling = "stop")
<- mpower::summary(power , crit = "pval", thres = 0.05, how = "lesser")
power_df #>
#> *** POWER ANALYSIS SUMMARY ***
#> Number of Monte Carlo simulations: 1000
#> Number of observations in each simulation: 100
#> Data generating process estimated SNR: 232.71
#> Inference model: F-test
#> Significance criterion: pval
#>
#> Significance threshold: 0.05
#>
#> | | power|
#> |:------|-----:|
#> |F-test | 1|
In this example, we generate predictors by resampling of a large existing dataset. We load data from the R package NHANES and treat ordinal Education and HHIncome as continuous variables.
library(NHANES)
data("NHANES")
<- NHANES %>%
nhanes_demo select(BMI, Education, HHIncome, HomeOwn, Poverty, Age) %>%
filter(complete.cases(.)) %>%
mutate(Education = case_when(Education == "8th Grade" ~ 1,
== "9 - 11th Grade" ~ 2,
Education == "High School" ~ 3,
Education == "Some College" ~ 4,
Education == "College Grad" ~ 5),
Education HHIncome = case_when(HHIncome == "more 99999" ~ 12,
== "75000-99999" ~ 11,
HHIncome == "65000-74999" ~ 10,
HHIncome == "55000-64999" ~ 9,
HHIncome == "45000-54999" ~ 8,
HHIncome == "35000-44999" ~ 7,
HHIncome == "25000-34999" ~ 6,
HHIncome == "20000-24999" ~ 5,
HHIncome == "15000-19999" ~ 4,
HHIncome == "10000-14999" ~ 3,
HHIncome == " 5000-9999" ~ 2,
HHIncome == " 0-4999" ~ 1))
HHIncome <- mpower::MixtureModel(method = "resampling", data = nhanes_demo %>% select(- BMI)) xmod
We can generate outcomes from a previously fitted model.
<- lm(BMI ~ Poverty*(poly(Age, 2) + HHIncome + HomeOwn + Education), data = nhanes_demo)
lm_demo # wrapper function that takes a data frame x and returns a vector of outcome
<- function(x) {
f_demo predict.lm(lm_demo, newdata = x)
}<- mpower::OutcomeModel(f = f_demo, family = "gaussian",
ymod sigma = sigma(lm_demo))
glm
modelWe need to give glm
the family and formula inputs. See
documentation of glm
for more options.
# pass the formula argument to glm()
<- mpower::InferenceModel(model = "glm", family = "gaussian",
imod formula = y ~ Poverty*(poly(Age, 2) + HHIncome + HomeOwn + Education))
The model lm_demo
is defined in the global environment,
outside the scope of the parallel processes. We need to pass
"lm_demo"
to the cluster_export
argument to
make sure the variable is defined while using parallelism.
<- mpower::sim_curve(xmod, ymod, imod,
curve s = 200, n = seq(1000, 5000, 1000),
cores = 2, errorhandling = "remove", snr_iter = 5000,
cluster_export = c("lm_demo"))
<- mpower::summary(curve, crit = "pval", thres = 0.05, how = "lesser")
curve_df #>
#> *** POWER CURVE ANALYSIS SUMMARY ***
#> Number of Monte Carlo simulations: 200
#> Number of observations in each simulation: 1000 2000 3000 4000 5000
#> Data generating process estimated SNR (for each outcome model): 0.03
#> Inference model: glm
#> Significance criterion: pval
#> Significance threshold: 0.05
#>
#> | | power| n| snr|
#> |:---------|-----:|----:|----:|
#> |Education | 0.340| 1000| 0.03|
#> |HHIncome | 0.230| 1000| 0.03|
#> |HomeOwn | 0.150| 1000| 0.03|
#> |Poverty | 0.595| 1000| 0.03|
#> |Age | 0.780| 1000| 0.03|
#> |Education | 0.575| 2000| 0.03|
#> |HHIncome | 0.365| 2000| 0.03|
#> |HomeOwn | 0.195| 2000| 0.03|
#> |Poverty | 0.765| 2000| 0.03|
#> |Age | 0.975| 2000| 0.03|
#> |Education | 0.810| 3000| 0.03|
#> |HHIncome | 0.515| 3000| 0.03|
#> |HomeOwn | 0.235| 3000| 0.03|
#> |Poverty | 0.925| 3000| 0.03|
#> |Age | 0.995| 3000| 0.03|
#> |Education | 0.810| 4000| 0.03|
#> |HHIncome | 0.560| 4000| 0.03|
#> |HomeOwn | 0.250| 4000| 0.03|
#> |Poverty | 0.935| 4000| 0.03|
#> |Age | 1.000| 4000| 0.03|
#> |Education | 0.905| 5000| 0.03|
#> |HHIncome | 0.670| 5000| 0.03|
#> |HomeOwn | 0.205| 5000| 0.03|
#> |Poverty | 0.975| 5000| 0.03|
#> |Age | 1.000| 5000| 0.03|
::plot_summary(curve, crit = "pval", thres = 0.05, how = "lesser") mpower
Here are examples of how to use other statistical inference models included in the package.
“Significant” is when the credible intervals don’t include zero. We access the 95% credible interval coverage with criterion “beta” and threshold 0.05.
<- mpower::InferenceModel(model = "bws", iter = 2000, family = "gaussian", refresh = 0)
bws_imod <- mpower::sim_power(xmod, ymod, bws_imod, s = 100, n = 1000,
bws_power cores=2, snr_iter=1000, errorhandling = "stop",
cluster_export = c("lm_demo"))
Similar to BWS but is a frequentist method. The significance criterion is the p-value.
<- mpower::InferenceModel(model="qgc")
qgcomp_imod <- mpower::sim_power(xmod, ymod, qgcomp_imod, s = 100, n = 1000,
qg_power cores=2, snr_iter=1000, errorhandling = "remove")
<- InferenceModel(model="fin", nrun = 2000, verbose=F)
fin_imod <- sim_power(xmod, ymod, fin_imod, s = 100, n = 1000,
fin_power cores=2, snr_iter=1000, errorhandling = "remove")
<- InferenceModel(model="bma", glm.family = "gaussian")
bma_imod <- sim_power(xmod, ymod, bma_imod, s = 100, n = 1000,
bma_power cores=2, snr_iter=1000, errorhandling = "remove")
<- InferenceModel(model = "bkmr", iter = 5000, verbose = F)
bkmr_imod <- sim_power(xmod, ymod, bkmr_imod, s = 100, n = 1000,
bkmr_power cores=2, snr_iter=1000, errorhandling = "remove")
We show how to work with a binary outcome here. We load NHANES data from the 2015-2016 and 2017-2018 cycles included in our package and define a “true” outcome model that includes linear main effects and an interaction. We check the power to detect these effects using a logistic regression and a sample size of 2000 observations.
data("nhanes1518")
<- c("URXCNP", "URXCOP", "URXECP", "URXHIBP", "URXMBP", "URXMC1", "URXMCOH", "URXMEP",
chems "URXMHBP", "URXMHH", "URXMHNC", "URXMHP", "URXMIB", "URXMNP", "URXMOH", "URXMZP")
<- mpower::MixtureModel(nhanes1518[, chems] %>% filter(complete.cases(.)),
chems_mod method = "resampling")
<- mpower::OutcomeModel(f = "0.2*URXCNP + 0.15*URXECP + 0.1*URXCOP*URXECP", family = "binomial")
bmi_mod <- mpower::InferenceModel(model = "glm", family = "binomial")
logit_mod <- mpower::sim_power(xmod=chems_mod, ymod=bmi_mod, imod=logit_mod,
logit_out s=100, n=2000, cores=2, snr_iter=5000)
<- summary(logit_out, crit="pval", thres=0.05, how="lesser")
logit_df #>
#> *** POWER ANALYSIS SUMMARY ***
#> Number of Monte Carlo simulations: 100
#> Number of observations in each simulation: 2000
#> Data generating process estimated SNR: 0.67
#> Inference model: glm
#> Significance criterion: pval
#>
#> Significance threshold: 0.05
#>
#> | | power|
#> |:-------|-----:|
#> |URXCNP | 0.18|
#> |URXCOP | 1.00|
#> |URXECP | 0.96|
#> |URXHIBP | 0.07|
#> |URXMBP | 0.03|
#> |URXMC1 | 0.05|
#> |URXMCOH | 0.05|
#> |URXMEP | 0.03|
#> |URXMHBP | 0.02|
#> |URXMHH | 0.05|
#> |URXMHNC | 0.05|
#> |URXMHP | 0.12|
#> |URXMIB | 0.02|
#> |URXMNP | 0.08|
#> |URXMOH | 0.07|
#> |URXMZP | 0.02|
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.