The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
library(modsem)
There are a number of approaches for estimating interaction effects
in SEM. In modsem()
, the method = "method"
argument allows you to choose which to use. Different approaches can be
categorized into two groups: Product Indicator (PI) and Distribution
Analytic (DA) approaches.
"ca"
= constrained approach (Algina & Moulder,
2001)
"uca"
= unconstrained approach (Marsh, 2004)"rca"
= residual centering approach (Little et al.,
2006)"dblcent"
= double centering approach (Marsh., 2013)
"pind"
= basic product indicator approach (not
recommended)"lms"
= The Latent Moderated Structural equations (LMS)
approach, see the vignette"qml"
= The Quasi Maximum Likelihood (QML) approach,
see the vignette"mplus"
<- '
m1 # Outer Model
X =~ x1 + x2 + x3
Y =~ y1 + y2 + y3
Z =~ z1 + z2 + z3
# Inner model
Y ~ X + Z + X:Z
'
# Product Indicator Approaches
modsem(m1, data = oneInt, method = "ca")
modsem(m1, data = oneInt, method = "uca")
modsem(m1, data = oneInt, method = "rca")
modsem(m1, data = oneInt, method = "dblcent")
# Distribution Analytic Approaches
modsem(m1, data = oneInt, method = "mplus")
modsem(m1, data = oneInt, method = "lms")
modsem(m1, data = oneInt, method = "qml")
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.