The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
mobilityIndexR measures mobility in a population by generating transition matrices and calculating mobility indices.
# Install the development version from GitHub:
# install.packages("devtools")
::install_github("bcmullins/mobilityIndexR") devtools
Let’s use one of the built in datasets to create a transition matrix:
library(mobilityIndexR)
data("incomeMobility")
getTMatrix(dat = incomeMobility, col_x = 't0', col_y = 't5', type = 'relative', probs = TRUE, num_ranks = 5)
#> $tmatrix
#>
#> 1 2 3 4 5
#> 1 0.152 0.040 0.008 0.000 0.000
#> 2 0.048 0.080 0.048 0.024 0.000
#> 3 0.000 0.048 0.064 0.056 0.032
#> 4 0.000 0.008 0.024 0.120 0.048
#> 5 0.000 0.024 0.056 0.000 0.120
#>
#> $col_x_bounds
#> 0% 20% 40% 60% 80% 100%
#> 462.0 21543.4 42469.8 64061.6 77888.4 99557.0
#>
#> $col_y_bounds
#> 0% 20% 40% 60% 80% 100%
#> 340.2705 18204.9969 39710.3062 58494.6271 78178.6713 262909.3195
Using this data, let’s now calculate mobility indices:
library(mobilityIndexR)
data("incomeMobility")
getMobilityIndices(dat = incomeMobility, col_x = 't0', col_y = 't5', type = 'relative', num_ranks = 5)
#> $average_movement
#> [1] 0.64
#>
#> $os_far_bottom
#> [1] 0.04
#>
#> $os_far_top
#> [1] 0.4
#>
#> $os_total_bottom
#> [1] 0.24
#>
#> $os_total_top
#> [1] 0.4
#>
#> $prais_bibby
#> [1] 0.464
#>
#> $wgm
#> [1] 0.58
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.