The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
The package mnt is designed to give users access to state of the art tests of multivariate normality. It accompanies the survey paper on goodness of fit tests of multivariate normality by Ebner, B. and Henze, N. (2020) Tests for multivariate normality – a critical review with emphasis on weighted L2-statistics, that will appear in TEST. All of the described tests can be performed by functions provided in mnt.
You can install the released version of mnt from CRAN with:
install.packages("mnt")
And the development version from GitHub with:
# install.packages("devtools")
::install_github("LBPy/mnt") devtools
This is a basic example on how to use the mnt package: We generate a multivariate data set X.data and perform the BHEP test of normality for the generated X.data and using the tuning parameter a=3. The significance level is alpha. Note that the critical values are simulated by a Monte Carlo method.
library(mnt)
= MASS::mvrnorm(50,c(3,4,5),diag(3,3))
X.data = test.BHEP(X.data,a=3,alpha=0.05) X.BHEP
X.BHEP #>
#> -------------------------------------------------------------------------
#>
#> Test for multivariate normality with the BHEP teststatistic.
#>
#> tuning parameter = 3
#> BHEP = 0.9514364
#> critical value = 1.09841 (via monte carlo)
#>
#>
#> -------------------------------------------------------------------------
The value of the test statistic can directly be computed by
BHEP(X.data,a=3)
#> [1] 0.9514364
This also works in the univariate case:
= stats::rnorm(25,3,5)
X.data = test.BHEP(X.data,a=2,alpha=0.05)
X.BHEP BHEP(X.data,a=2)
X.BHEP #>
#> -------------------------------------------------------------------------
#>
#> Test for multivariate normality with the BHEP teststatistic.
#>
#> tuning parameter = 2
#> BHEP = 0.6427705
#> critical value = 0.9922879 (via monte carlo)
#>
#>
#> -------------------------------------------------------------------------
And for other test statistics too:
= stats::rnorm(25,3,5)
X.data = test.DEHT(X.data,a=2,alpha=0.05)
X.DEHT DEHT(X.data,a=2)
X.DEHT #>
#> -------------------------------------------------------------------------
#>
#> Test for multivariate normality with the DEH based on harmonic oscillator teststatistic.
#>
#> tuning parameter = 2
#> DEH based on harmonic oscillator = 1.303027
#> critical value = 1.464164 (via monte carlo)
#>
#>
#> -------------------------------------------------------------------------
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.