# nolint start
library(mlexperiments)
library(mlsurvlrnrs)The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
# nolint start
library(mlexperiments)
library(mlsurvlrnrs)See https://github.com/kapsner/mlsurvlrnrs/blob/main/R/learner_surv_xgboost_cox.R for implementation details.
dataset <- survival::colon |>
data.table::as.data.table() |>
na.omit()
dataset <- dataset[get("etype") == 2, ]
surv_cols <- c("status", "time", "rx")
feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)]seed <- 123
if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
# on cran
ncores <- 2L
} else {
ncores <- ifelse(
test = parallel::detectCores() > 4,
yes = 4L,
no = ifelse(
test = parallel::detectCores() < 2L,
yes = 1L,
no = parallel::detectCores()
)
)
}
options("mlexperiments.bayesian.max_init" = 10L)
options("mlexperiments.optim.xgb.nrounds" = 100L)
options("mlexperiments.optim.xgb.early_stopping_rounds" = 10L)split_vector <- splitTools::multi_strata(
df = dataset[, .SD, .SDcols = surv_cols],
strategy = "kmeans",
k = 4
)
data_split <- splitTools::partition(
y = split_vector,
p = c(train = 0.7, test = 0.3),
type = "stratified",
seed = seed
)
train_x <- model.matrix(
~ -1 + .,
dataset[
data_split$train, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])
]
)
train_y <- survival::Surv(
event = (dataset[data_split$train, get("status")] |>
as.character() |>
as.integer()),
time = dataset[data_split$train, get("time")],
type = "right"
)
split_vector_train <- splitTools::multi_strata(
df = dataset[data_split$train, .SD, .SDcols = surv_cols],
strategy = "kmeans",
k = 4
)
test_x <- model.matrix(
~ -1 + .,
dataset[data_split$test, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])]
)
test_y <- survival::Surv(
event = (dataset[data_split$test, get("status")] |>
as.character() |>
as.integer()),
time = dataset[data_split$test, get("time")],
type = "right"
)fold_list <- splitTools::create_folds(
y = split_vector_train,
k = 3,
type = "stratified",
seed = seed
)# required learner arguments, not optimized
learner_args <- list(
objective = "survival:cox",
eval_metric = "cox-nloglik"
)
# set arguments for predict function and performance metric,
# required for mlexperiments::MLCrossValidation and
# mlexperiments::MLNestedCV
predict_args <- NULL
performance_metric <- c_index
performance_metric_args <- NULL
return_models <- FALSE
# required for grid search and initialization of bayesian optimization
parameter_grid <- expand.grid(
subsample = seq(0.6, 1, .2),
colsample_bytree = seq(0.6, 1, .2),
min_child_weight = seq(1, 5, 4),
learning_rate = seq(0.1, 0.2, 0.1),
max_depth = seq(1, 5, 4)
)
# reduce to a maximum of 10 rows
if (nrow(parameter_grid) > 10) {
set.seed(123)
sample_rows <- sample(seq_len(nrow(parameter_grid)), 10, FALSE)
parameter_grid <- kdry::mlh_subset(parameter_grid, sample_rows)
}
# required for bayesian optimization
parameter_bounds <- list(
subsample = c(0.2, 1),
colsample_bytree = c(0.2, 1),
min_child_weight = c(1L, 10L),
learning_rate = c(0.1, 0.2),
max_depth = c(1L, 10L)
)
optim_args <- list(
iters.n = ncores,
kappa = 3.5,
acq = "ucb"
)tuner <- mlexperiments::MLTuneParameters$new(
learner = LearnerSurvXgboostCox$new(
metric_optimization_higher_better = FALSE
),
strategy = "grid",
ncores = ncores,
seed = seed
)
tuner$parameter_grid <- parameter_grid
tuner$learner_args <- learner_args
tuner$split_type <- "stratified"
tuner$split_vector <- split_vector_train
tuner$set_data(
x = train_x,
y = train_y
)
tuner_results_grid <- tuner$execute(k = 3)
#>
#> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%)
#> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%)
#> Parameter settings [==========================================================================================================================================] 10/10 (100%)
head(tuner_results_grid)
#> setting_id metric_optim_mean nrounds subsample colsample_bytree min_child_weight learning_rate
#> <int> <num> <int> <num> <num> <num> <num>
#> 1: 1 4.846400 37 0.6 0.8 5 0.2
#> 2: 2 4.862686 10 1.0 0.8 5 0.1
#> 3: 3 4.852380 41 0.8 0.8 5 0.1
#> 4: 4 4.875127 7 0.6 0.8 5 0.2
#> 5: 5 4.897189 7 1.0 0.8 1 0.1
#> 6: 6 4.854463 10 0.8 0.8 5 0.1
#> max_depth objective eval_metric
#> <num> <char> <char>
#> 1: 1 survival:cox cox-nloglik
#> 2: 5 survival:cox cox-nloglik
#> 3: 1 survival:cox cox-nloglik
#> 4: 5 survival:cox cox-nloglik
#> 5: 5 survival:cox cox-nloglik
#> 6: 5 survival:cox cox-nlogliktuner <- mlexperiments::MLTuneParameters$new(
learner = LearnerSurvXgboostCox$new(
metric_optimization_higher_better = FALSE
),
strategy = "bayesian",
ncores = ncores,
seed = seed
)
tuner$parameter_grid <- parameter_grid
tuner$parameter_bounds <- parameter_bounds
tuner$learner_args <- learner_args
tuner$optim_args <- optim_args
tuner$split_type <- "stratified"
tuner$split_vector <- split_vector_train
tuner$set_data(
x = train_x,
y = train_y
)
tuner_results_bayesian <- tuner$execute(k = 3)
#>
#> Registering parallel backend using 4 cores.
head(tuner_results_bayesian)
#> Epoch setting_id subsample colsample_bytree min_child_weight learning_rate max_depth gpUtility
#> <num> <int> <num> <num> <num> <num> <num> <num>
#> 1: 0 1 0.6 0.8 5 0.2 1 NA
#> 2: 0 2 1.0 0.8 5 0.1 5 NA
#> 3: 0 3 0.8 0.8 5 0.1 1 NA
#> 4: 0 4 0.6 0.8 5 0.2 5 NA
#> 5: 0 5 1.0 0.8 1 0.1 5 NA
#> 6: 0 6 0.8 0.8 5 0.1 5 NA
#> acqOptimum inBounds Elapsed Score metric_optim_mean nrounds errorMessage objective
#> <lgcl> <lgcl> <num> <num> <num> <int> <lgcl> <char>
#> 1: FALSE TRUE 0.947 -4.846400 4.846400 37 NA survival:cox
#> 2: FALSE TRUE 0.945 -4.862686 4.862686 10 NA survival:cox
#> 3: FALSE TRUE 0.925 -4.852380 4.852380 41 NA survival:cox
#> 4: FALSE TRUE 0.817 -4.875127 4.875127 7 NA survival:cox
#> 5: FALSE TRUE 0.081 -4.897189 4.897189 7 NA survival:cox
#> 6: FALSE TRUE 0.124 -4.854463 4.854463 10 NA survival:cox
#> eval_metric
#> <char>
#> 1: cox-nloglik
#> 2: cox-nloglik
#> 3: cox-nloglik
#> 4: cox-nloglik
#> 5: cox-nloglik
#> 6: cox-nloglikvalidator <- mlexperiments::MLCrossValidation$new(
learner = LearnerSurvXgboostCox$new(
metric_optimization_higher_better = FALSE
),
fold_list = fold_list,
ncores = ncores,
seed = seed
)
validator$learner_args <- tuner$results$best.setting[-1]
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator$set_data(
x = train_x,
y = train_y
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> CV fold: Fold2
#>
#> CV fold: Fold3
head(validator_results)
#> fold performance subsample colsample_bytree min_child_weight learning_rate max_depth nrounds
#> <char> <num> <num> <num> <num> <num> <num> <int>
#> 1: Fold1 0.6581185 0.6 0.8 5 0.2 1 37
#> 2: Fold2 0.6584779 0.6 0.8 5 0.2 1 37
#> 3: Fold3 0.6291327 0.6 0.8 5 0.2 1 37
#> objective eval_metric
#> <char> <char>
#> 1: survival:cox cox-nloglik
#> 2: survival:cox cox-nloglik
#> 3: survival:cox cox-nloglikvalidator <- mlexperiments::MLNestedCV$new(
learner = LearnerSurvXgboostCox$new(
metric_optimization_higher_better = FALSE
),
strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
validator$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator$split_vector <- split_vector_train
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator$set_data(
x = train_x,
y = train_y
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%)
#> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%)
#> Parameter settings [==========================================================================================================================================] 10/10 (100%)
#> CV fold: Fold2
#> CV progress [=================================================================================================>-------------------------------------------------] 2/3 ( 67%)
#>
#> Parameter settings [=====================================================================>---------------------------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [==================================================================================>--------------------------------------------------------] 6/10 ( 60%)
#> Parameter settings [================================================================================================>------------------------------------------] 7/10 ( 70%)
#> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%)
#> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%)
#> Parameter settings [==========================================================================================================================================] 10/10 (100%)
#> CV fold: Fold3
#> CV progress [===================================================================================================================================================] 3/3 (100%)
#>
#> Parameter settings [=======================================================>-----------------------------------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [=====================================================================>---------------------------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [==================================================================================>--------------------------------------------------------] 6/10 ( 60%)
#> Parameter settings [================================================================================================>------------------------------------------] 7/10 ( 70%)
#> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%)
#> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%)
#> Parameter settings [==========================================================================================================================================] 10/10 (100%)
head(validator_results)
#> fold performance nrounds subsample colsample_bytree min_child_weight learning_rate max_depth
#> <char> <num> <int> <num> <num> <num> <num> <num>
#> 1: Fold1 0.6519473 23 0.6 0.8 5 0.2 1
#> 2: Fold2 0.6227989 11 0.6 1.0 1 0.2 1
#> 3: Fold3 0.6508312 54 0.8 0.8 5 0.1 1
#> objective eval_metric
#> <char> <char>
#> 1: survival:cox cox-nloglik
#> 2: survival:cox cox-nloglik
#> 3: survival:cox cox-nloglikvalidator <- mlexperiments::MLNestedCV$new(
learner = LearnerSurvXgboostCox$new(
metric_optimization_higher_better = FALSE
),
strategy = "bayesian",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = 312
)
validator$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator$split_vector <- split_vector_train
validator$parameter_bounds <- parameter_bounds
validator$optim_args <- optim_args
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- TRUE
validator$set_data(
x = train_x,
y = train_y
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold2
#> CV progress [=================================================================================================>-------------------------------------------------] 2/3 ( 67%)
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold3
#> CV progress [===================================================================================================================================================] 3/3 (100%)
#>
#> Registering parallel backend using 4 cores.
head(validator_results)
#> fold performance subsample colsample_bytree min_child_weight learning_rate max_depth nrounds
#> <char> <num> <num> <num> <num> <num> <num> <int>
#> 1: Fold1 0.6491018 0.6 1.0 1 0.2000000 1 24
#> 2: Fold2 0.6473323 0.6 0.8 5 0.2000000 1 17
#> 3: Fold3 0.6295374 1.0 0.8 6 0.1592348 5 8
#> objective eval_metric
#> <char> <char>
#> 1: survival:cox cox-nloglik
#> 2: survival:cox cox-nloglik
#> 3: survival:cox cox-nloglikpreds_xgboost <- mlexperiments::predictions(
object = validator,
newdata = test_x
)perf_xgboost <- mlexperiments::performance(
object = validator,
prediction_results = preds_xgboost,
y_ground_truth = test_y
)
perf_xgboost
#> model performance
#> <char> <num>
#> 1: Fold1 0.6531627
#> 2: Fold2 0.6421748
#> 3: Fold3 0.6318355These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.