# nolint start
library(mlexperiments)
library(mlsurvlrnrs)
The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
# nolint start
library(mlexperiments)
library(mlsurvlrnrs)
See https://github.com/kapsner/mlsurvlrnrs/blob/main/R/learner_surv_xgboost_cox.R for implementation details.
<- survival::colon |>
dataset ::as.data.table() |>
data.tablena.omit()
<- dataset[get("etype") == 2, ]
dataset
<- c("status", "time", "rx")
surv_cols <- colnames(dataset)[3:(ncol(dataset) - 1)] feature_cols
<- 123
seed if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
# on cran
<- 2L
ncores else {
} <- ifelse(
ncores test = parallel::detectCores() > 4,
yes = 4L,
no = ifelse(
test = parallel::detectCores() < 2L,
yes = 1L,
no = parallel::detectCores()
)
)
}options("mlexperiments.bayesian.max_init" = 10L)
options("mlexperiments.optim.xgb.nrounds" = 100L)
options("mlexperiments.optim.xgb.early_stopping_rounds" = 10L)
<- splitTools::multi_strata(
split_vector df = dataset[, .SD, .SDcols = surv_cols],
strategy = "kmeans",
k = 4
)
<- splitTools::partition(
data_split y = split_vector,
p = c(train = 0.7, test = 0.3),
type = "stratified",
seed = seed
)
<- model.matrix(
train_x ~ -1 + .,
dataset[$train, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])
data_split
]
)<- survival::Surv(
train_y event = (dataset[data_split$train, get("status")] |>
as.character() |>
as.integer()),
time = dataset[data_split$train, get("time")],
type = "right"
)<- splitTools::multi_strata(
split_vector_train df = dataset[data_split$train, .SD, .SDcols = surv_cols],
strategy = "kmeans",
k = 4
)
<- model.matrix(
test_x ~ -1 + .,
$test, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])]
dataset[data_split
)<- survival::Surv(
test_y event = (dataset[data_split$test, get("status")] |>
as.character() |>
as.integer()),
time = dataset[data_split$test, get("time")],
type = "right"
)
<- splitTools::create_folds(
fold_list y = split_vector_train,
k = 3,
type = "stratified",
seed = seed
)
# required learner arguments, not optimized
<- list(
learner_args objective = "survival:cox",
eval_metric = "cox-nloglik"
)
# set arguments for predict function and performance metric,
# required for mlexperiments::MLCrossValidation and
# mlexperiments::MLNestedCV
<- NULL
predict_args <- c_index
performance_metric <- NULL
performance_metric_args <- FALSE
return_models
# required for grid search and initialization of bayesian optimization
<- expand.grid(
parameter_grid subsample = seq(0.6, 1, .2),
colsample_bytree = seq(0.6, 1, .2),
min_child_weight = seq(1, 5, 4),
learning_rate = seq(0.1, 0.2, 0.1),
max_depth = seq(1, 5, 4)
)# reduce to a maximum of 10 rows
if (nrow(parameter_grid) > 10) {
set.seed(123)
<- sample(seq_len(nrow(parameter_grid)), 10, FALSE)
sample_rows <- kdry::mlh_subset(parameter_grid, sample_rows)
parameter_grid
}
# required for bayesian optimization
<- list(
parameter_bounds subsample = c(0.2, 1),
colsample_bytree = c(0.2, 1),
min_child_weight = c(1L, 10L),
learning_rate = c(0.1, 0.2),
max_depth = c(1L, 10L)
)<- list(
optim_args iters.n = ncores,
kappa = 3.5,
acq = "ucb"
)
<- mlexperiments::MLTuneParameters$new(
tuner learner = LearnerSurvXgboostCox$new(
metric_optimization_higher_better = FALSE
),strategy = "grid",
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
tuner$learner_args <- learner_args
tuner$split_type <- "stratified"
tuner$split_vector <- split_vector_train
tuner
$set_data(
tunerx = train_x,
y = train_y
)
<- tuner$execute(k = 3)
tuner_results_grid #>
#> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%)
#> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%)
#> Parameter settings [==========================================================================================================================================] 10/10 (100%)
head(tuner_results_grid)
#> setting_id metric_optim_mean nrounds subsample colsample_bytree min_child_weight learning_rate max_depth objective eval_metric
#> 1: 1 4.866125 26 0.6 0.8 5 0.2 1 survival:cox cox-nloglik
#> 2: 2 4.896370 14 1.0 0.8 5 0.1 5 survival:cox cox-nloglik
#> 3: 3 4.860956 72 0.8 0.8 5 0.1 1 survival:cox cox-nloglik
#> 4: 4 4.867604 6 0.6 0.8 5 0.2 5 survival:cox cox-nloglik
#> 5: 5 4.893917 14 1.0 0.8 1 0.1 5 survival:cox cox-nloglik
#> 6: 6 4.883471 13 0.8 0.8 5 0.1 5 survival:cox cox-nloglik
<- mlexperiments::MLTuneParameters$new(
tuner learner = LearnerSurvXgboostCox$new(
metric_optimization_higher_better = FALSE
),strategy = "bayesian",
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
tuner$parameter_bounds <- parameter_bounds
tuner
$learner_args <- learner_args
tuner$optim_args <- optim_args
tuner
$split_type <- "stratified"
tuner$split_vector <- split_vector_train
tuner
$set_data(
tunerx = train_x,
y = train_y
)
<- tuner$execute(k = 3)
tuner_results_bayesian #>
#> Registering parallel backend using 4 cores.
head(tuner_results_bayesian)
#> Epoch setting_id subsample colsample_bytree min_child_weight learning_rate max_depth gpUtility acqOptimum inBounds Elapsed Score metric_optim_mean nrounds errorMessage
#> 1: 0 1 0.6 0.8 5 0.2 1 NA FALSE TRUE 1.792 -4.867594 4.867594 22 NA
#> 2: 0 2 1.0 0.8 5 0.1 5 NA FALSE TRUE 1.826 -4.901912 4.901912 12 NA
#> 3: 0 3 0.8 0.8 5 0.1 1 NA FALSE TRUE 1.833 -4.874152 4.874152 48 NA
#> 4: 0 4 0.6 0.8 5 0.2 5 NA FALSE TRUE 1.836 -4.870687 4.870687 5 NA
#> 5: 0 5 1.0 0.8 1 0.1 5 NA FALSE TRUE 0.813 -4.883240 4.883240 14 NA
#> 6: 0 6 0.8 0.8 5 0.1 5 NA FALSE TRUE 0.861 -4.895220 4.895220 13 NA
#> objective eval_metric
#> 1: survival:cox cox-nloglik
#> 2: survival:cox cox-nloglik
#> 3: survival:cox cox-nloglik
#> 4: survival:cox cox-nloglik
#> 5: survival:cox cox-nloglik
#> 6: survival:cox cox-nloglik
<- mlexperiments::MLCrossValidation$new(
validator learner = LearnerSurvXgboostCox$new(
metric_optimization_higher_better = FALSE
),fold_list = fold_list,
ncores = ncores,
seed = seed
)
$learner_args <- tuner$results$best.setting[-1]
validator
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> CV fold: Fold2
#>
#> CV fold: Fold3
head(validator_results)
#> fold performance subsample colsample_bytree min_child_weight learning_rate max_depth nrounds objective eval_metric
#> 1: Fold1 0.6433838 0.3015909 0.5804647 1 0.2 1 27 survival:cox cox-nloglik
#> 2: Fold2 0.6979611 0.3015909 0.5804647 1 0.2 1 27 survival:cox cox-nloglik
#> 3: Fold3 0.6536441 0.3015909 0.5804647 1 0.2 1 27 survival:cox cox-nloglik
<- mlexperiments::MLNestedCV$new(
validator learner = LearnerSurvXgboostCox$new(
metric_optimization_higher_better = FALSE
),strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator$split_vector <- split_vector_train
validator
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%)
#> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%)
#> Parameter settings [==========================================================================================================================================] 10/10 (100%)
#> CV fold: Fold2
#> CV progress [=================================================================================================>-------------------------------------------------] 2/3 ( 67%)
#>
#> Parameter settings [=====================================================================>---------------------------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [==================================================================================>--------------------------------------------------------] 6/10 ( 60%)
#> Parameter settings [================================================================================================>------------------------------------------] 7/10 ( 70%)
#> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%)
#> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%)
#> Parameter settings [==========================================================================================================================================] 10/10 (100%)
#> CV fold: Fold3
#> CV progress [===================================================================================================================================================] 3/3 (100%)
#>
#> Parameter settings [=======================================================>-----------------------------------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [=====================================================================>---------------------------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [==================================================================================>--------------------------------------------------------] 6/10 ( 60%)
#> Parameter settings [================================================================================================>------------------------------------------] 7/10 ( 70%)
#> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%)
#> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%)
#> Parameter settings [==========================================================================================================================================] 10/10 (100%)
head(validator_results)
#> fold performance nrounds subsample colsample_bytree min_child_weight learning_rate max_depth objective eval_metric
#> 1: Fold1 0.6355074 47 0.6 1.0 1 0.2 1 survival:cox cox-nloglik
#> 2: Fold2 0.6699094 13 0.8 0.8 5 0.1 5 survival:cox cox-nloglik
#> 3: Fold3 0.6832026 20 0.6 0.8 5 0.2 1 survival:cox cox-nloglik
<- mlexperiments::MLNestedCV$new(
validator learner = LearnerSurvXgboostCox$new(
metric_optimization_higher_better = FALSE
),strategy = "bayesian",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = 312
)
$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator$split_vector <- split_vector_train
validator
$parameter_bounds <- parameter_bounds
validator$optim_args <- optim_args
validator
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- TRUE
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold2
#> CV progress [=================================================================================================>-------------------------------------------------] 2/3 ( 67%)
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold3
#> CV progress [===================================================================================================================================================] 3/3 (100%)
#>
#> Registering parallel backend using 4 cores.
head(validator_results)
#> fold performance subsample colsample_bytree min_child_weight learning_rate max_depth nrounds objective eval_metric
#> 1: Fold1 0.6420432 0.6394793 0.9881643 4 0.1268116 1 53 survival:cox cox-nloglik
#> 2: Fold2 0.6563499 1.0000000 1.0000000 5 0.1000000 5 11 survival:cox cox-nloglik
#> 3: Fold3 0.6573680 0.7495501 0.4383327 7 0.1000000 5 20 survival:cox cox-nloglik
<- mlexperiments::predictions(
preds_xgboost object = validator,
newdata = test_x
)
<- mlexperiments::performance(
perf_xgboost object = validator,
prediction_results = preds_xgboost,
y_ground_truth = test_y
)
perf_xgboost#> model performance
#> 1: Fold1 0.6384856
#> 2: Fold2 0.6118066
#> 3: Fold3 0.6356952
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.