The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.

xgboost: Survival Analysis, AFT Analysis

# nolint start
library(mlexperiments)
library(mlsurvlrnrs)

See https://github.com/kapsner/mlsurvlrnrs/blob/main/R/learner_surv_xgboost_aft.R for implementation details.

Preprocessing

Import and Prepare Data

dataset <- survival::colon |>
  data.table::as.data.table() |>
  na.omit()
dataset <- dataset[get("etype") == 2, ]

surv_cols <- c("status", "time", "rx")
feature_cols <- colnames(dataset)[3:(ncol(dataset) - 1)]

General Configurations

seed <- 123
if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
  # on cran
  ncores <- 2L
} else {
  ncores <- ifelse(
    test = parallel::detectCores() > 4,
    yes = 4L,
    no = ifelse(
      test = parallel::detectCores() < 2L,
      yes = 1L,
      no = parallel::detectCores()
    )
  )
}
options("mlexperiments.bayesian.max_init" = 10L)
options("mlexperiments.optim.xgb.nrounds" = 100L)
options("mlexperiments.optim.xgb.early_stopping_rounds" = 10L)

Generate Training- and Test Data

split_vector <- splitTools::multi_strata(
  df = dataset[, .SD, .SDcols = surv_cols],
  strategy = "kmeans",
  k = 4
)

data_split <- splitTools::partition(
  y = split_vector,
  p = c(train = 0.7, test = 0.3),
  type = "stratified",
  seed = seed
)

train_x <- model.matrix(
  ~ -1 + .,
  dataset[
    data_split$train,
    .SD,
    .SDcols = setdiff(feature_cols, surv_cols[1:2])
  ]
)
train_y <- survival::Surv(
  event = (dataset[data_split$train, get("status")] |>
    as.character() |>
    as.integer()),
  time = dataset[data_split$train, get("time")],
  type = "right"
)
split_vector_train <- splitTools::multi_strata(
  df = dataset[data_split$train, .SD, .SDcols = surv_cols],
  strategy = "kmeans",
  k = 4
)


test_x <- model.matrix(
  ~ -1 + .,
  dataset[data_split$test, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])]
)
test_y <- survival::Surv(
  event = (dataset[data_split$test, get("status")] |>
    as.character() |>
    as.integer()),
  time = dataset[data_split$test, get("time")],
  type = "right"
)

Generate Training Data Folds

fold_list <- splitTools::create_folds(
  y = split_vector_train,
  k = 3,
  type = "stratified",
  seed = seed
)

Experiments

Prepare Experiments

# required learner arguments, not optimized
learner_args <- list(
  objective = "survival:aft",
  eval_metric = "aft-nloglik"
)

# set arguments for predict function and performance metric,
# required for mlexperiments::MLCrossValidation and
# mlexperiments::MLNestedCV
predict_args <- NULL
performance_metric <- c_index
performance_metric_args <- NULL
return_models <- FALSE

# required for grid search and initialization of bayesian optimization
parameter_grid <- expand.grid(
  subsample = seq(0.6, 1, .2),
  colsample_bytree = seq(0.6, 1, .2),
  min_child_weight = seq(1, 5, 4),
  learning_rate = seq(0.1, 0.2, 0.1),
  max_depth = seq(1, 5, 4)
)
# reduce to a maximum of 10 rows
if (nrow(parameter_grid) > 10) {
  set.seed(123)
  sample_rows <- sample(seq_len(nrow(parameter_grid)), 10, FALSE)
  parameter_grid <- kdry::mlh_subset(parameter_grid, sample_rows)
}

# required for bayesian optimization
parameter_bounds <- list(
  subsample = c(0.2, 1),
  colsample_bytree = c(0.2, 1),
  min_child_weight = c(1L, 10L),
  learning_rate = c(0.1, 0.2),
  max_depth = c(1L, 10L)
)
optim_args <- list(
  iters.n = ncores,
  kappa = 3.5,
  acq = "ucb"
)

Hyperparameter Tuning

tuner <- mlexperiments::MLTuneParameters$new(
  learner = LearnerSurvXgboostAft$new(
    metric_optimization_higher_better = FALSE
  ),
  strategy = "grid",
  ncores = ncores,
  seed = seed
)

tuner$parameter_grid <- parameter_grid
tuner$learner_args <- learner_args
tuner$split_type <- "stratified"
tuner$split_vector <- split_vector_train

tuner$set_data(
  x = train_x,
  y = train_y
)

tuner_results_grid <- tuner$execute(k = 3)
#>
#> Parameter settings [=======================================================>-----------------------------------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [=====================================================================>---------------------------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [==================================================================================>--------------------------------------------------------] 6/10 ( 60%)
#> Parameter settings [================================================================================================>------------------------------------------] 7/10 ( 70%)
#> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%)
#> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%)
#> Parameter settings [==========================================================================================================================================] 10/10 (100%)

head(tuner_results_grid)
#>    setting_id metric_optim_mean  nrounds subsample colsample_bytree min_child_weight learning_rate max_depth    objective eval_metric
#>         <int>             <num>    <num>     <num>            <num>            <num>         <num>     <num>       <char>      <char>
#> 1:          1          4.350527 30.33333       0.6              0.8                5           0.2         1 survival:aft aft-nloglik
#> 2:          2          4.384429 40.00000       1.0              0.8                5           0.1         5 survival:aft aft-nloglik
#> 3:          3          4.351162 65.66667       0.8              0.8                5           0.1         1 survival:aft aft-nloglik
#> 4:          4          4.408632 19.66667       0.6              0.8                5           0.2         5 survival:aft aft-nloglik
#> 5:          5          4.397901 40.66667       1.0              0.8                1           0.1         5 survival:aft aft-nloglik
#> 6:          6          4.380873 42.66667       0.8              0.8                5           0.1         5 survival:aft aft-nloglik

Bayesian Optimization

tuner <- mlexperiments::MLTuneParameters$new(
  learner = LearnerSurvXgboostAft$new(
    metric_optimization_higher_better = FALSE
  ),
  strategy = "bayesian",
  ncores = ncores,
  seed = seed
)

tuner$parameter_grid <- parameter_grid
tuner$parameter_bounds <- parameter_bounds

tuner$learner_args <- learner_args
tuner$optim_args <- optim_args

tuner$split_type <- "stratified"
tuner$split_vector <- split_vector_train

tuner$set_data(
  x = train_x,
  y = train_y
)

tuner_results_bayesian <- tuner$execute(k = 3)
#>
#> Registering parallel backend using 4 cores.

head(tuner_results_bayesian)
#>    Epoch setting_id subsample colsample_bytree min_child_weight learning_rate max_depth gpUtility acqOptimum inBounds Elapsed
#>    <num>      <int>     <num>            <num>            <num>         <num>     <num>     <num>     <lgcl>   <lgcl>   <num>
#> 1:     0          1       0.6              0.8                5           0.2         1        NA      FALSE     TRUE   1.726
#> 2:     0          2       1.0              0.8                5           0.1         5        NA      FALSE     TRUE   1.805
#> 3:     0          3       0.8              0.8                5           0.1         1        NA      FALSE     TRUE   1.817
#> 4:     0          4       0.6              0.8                5           0.2         5        NA      FALSE     TRUE   1.774
#> 5:     0          5       1.0              0.8                1           0.1         5        NA      FALSE     TRUE   0.925
#> 6:     0          6       0.8              0.8                5           0.1         5        NA      FALSE     TRUE   0.896
#>        Score metric_optim_mean  nrounds errorMessage    objective eval_metric
#>        <num>             <num>    <num>       <lgcl>       <char>      <char>
#> 1: -4.345650          4.345650 27.66667           NA survival:aft aft-nloglik
#> 2: -4.378685          4.378685 42.66667           NA survival:aft aft-nloglik
#> 3: -4.349229          4.349229 49.00000           NA survival:aft aft-nloglik
#> 4: -4.413895          4.413895 21.33333           NA survival:aft aft-nloglik
#> 5: -4.400767          4.400767 40.66667           NA survival:aft aft-nloglik
#> 6: -4.359158          4.359158 40.33333           NA survival:aft aft-nloglik

k-Fold Cross Validation

validator <- mlexperiments::MLCrossValidation$new(
  learner = LearnerSurvXgboostAft$new(
    metric_optimization_higher_better = FALSE
  ),
  fold_list = fold_list,
  ncores = ncores,
  seed = seed
)

validator$learner_args <- tuner$results$best.setting[-1]
validator$learner_args$nrounds <- floor(validator$learner_args$nrounds)
validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models

validator$set_data(
  x = train_x,
  y = train_y
)
validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> CV fold: Fold2
#>
#> CV fold: Fold3

head(validator_results)
#>      fold performance subsample colsample_bytree min_child_weight learning_rate max_depth nrounds    objective eval_metric
#>    <char>       <num>     <num>            <num>            <num>         <num>     <num>   <num>       <char>      <char>
#> 1:  Fold1   0.3952192       0.6              0.8                5           0.2         1      27 survival:aft aft-nloglik
#> 2:  Fold2   0.3510979       0.6              0.8                5           0.2         1      27 survival:aft aft-nloglik
#> 3:  Fold3   0.3043296       0.6              0.8                5           0.2         1      27 survival:aft aft-nloglik

Nested Cross Validation

validator <- mlexperiments::MLNestedCV$new(
  learner = LearnerSurvXgboostAft$new(
    metric_optimization_higher_better = FALSE
  ),
  strategy = "grid",
  fold_list = fold_list,
  k_tuning = 3L,
  ncores = ncores,
  seed = seed
)

validator$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator$split_vector <- split_vector_train

validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models

validator$set_data(
  x = train_x,
  y = train_y
)

validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> Parameter settings [=======================================================>-----------------------------------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [=====================================================================>---------------------------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [==================================================================================>--------------------------------------------------------] 6/10 ( 60%)
#> Parameter settings [================================================================================================>------------------------------------------] 7/10 ( 70%)
#> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%)
#> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%)
#> Parameter settings [==========================================================================================================================================] 10/10 (100%)
#> CV fold: Fold2
#> CV progress [=================================================================================================>-------------------------------------------------] 2/3 ( 67%)
#>
#> Parameter settings [=========================================>-------------------------------------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=======================================================>-----------------------------------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [=====================================================================>---------------------------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [==================================================================================>--------------------------------------------------------] 6/10 ( 60%)
#> Parameter settings [================================================================================================>------------------------------------------] 7/10 ( 70%)
#> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%)
#> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%)
#> Parameter settings [==========================================================================================================================================] 10/10 (100%)
#> CV fold: Fold3
#> CV progress [===================================================================================================================================================] 3/3 (100%)
#>
#> Parameter settings [=======================================================>-----------------------------------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [=====================================================================>---------------------------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [==================================================================================>--------------------------------------------------------] 6/10 ( 60%)
#> Parameter settings [================================================================================================>------------------------------------------] 7/10 ( 70%)
#> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%)
#> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%)
#> Parameter settings [==========================================================================================================================================] 10/10 (100%)

head(validator_results)
#>      fold performance  nrounds subsample colsample_bytree min_child_weight learning_rate max_depth    objective eval_metric
#>    <char>       <num>    <num>     <num>            <num>            <num>         <num>     <num>       <char>      <char>
#> 1:  Fold1   0.3940442 32.66667       0.6              0.8                5           0.2         1 survival:aft aft-nloglik
#> 2:  Fold2   0.3409029 29.66667       0.6              0.8                5           0.2         1 survival:aft aft-nloglik
#> 3:  Fold3   0.3188261 54.33333       0.8              0.8                5           0.1         1 survival:aft aft-nloglik

Inner Bayesian Optimization

validator <- mlexperiments::MLNestedCV$new(
  learner = LearnerSurvXgboostAft$new(
    metric_optimization_higher_better = FALSE
  ),
  strategy = "bayesian",
  fold_list = fold_list,
  k_tuning = 3L,
  ncores = ncores,
  seed = 312
)

validator$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator$split_vector <- split_vector_train


validator$parameter_bounds <- parameter_bounds
validator$optim_args <- optim_args

validator$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- TRUE

validator$set_data(
  x = train_x,
  y = train_y
)

validator_results <- validator$execute()
#>
#> CV fold: Fold1
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold2
#> CV progress [=================================================================================================>-------------------------------------------------] 2/3 ( 67%)
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold3
#> CV progress [===================================================================================================================================================] 3/3 (100%)
#>
#> Registering parallel backend using 4 cores.

head(validator_results)
#>      fold performance subsample colsample_bytree min_child_weight learning_rate max_depth  nrounds
#>    <char>       <num>     <num>            <num>            <num>         <num>     <num>    <num>
#> 1:  Fold1   0.3778285 0.2000000        0.8372285                1     0.1290960         1 46.66667
#> 2:  Fold2   0.3532460 0.7222891        0.9914938                1     0.1085742         1 61.00000
#> 3:  Fold3   0.3159590 0.6000000        1.0000000                1     0.2000000         1 28.66667
#>       objective eval_metric
#>          <char>      <char>
#> 1: survival:aft aft-nloglik
#> 2: survival:aft aft-nloglik
#> 3: survival:aft aft-nloglik

Holdout Test Dataset Performance

Predict Outcome in Holdout Test Dataset

preds_xgboost <- mlexperiments::predictions(
  object = validator,
  newdata = test_x
)

Evaluate Performance on Holdout Test Dataset

perf_xgboost <- mlexperiments::performance(
  object = validator,
  prediction_results = preds_xgboost,
  y_ground_truth = test_y
)
perf_xgboost
#>     model performance
#>    <char>       <num>
#> 1:  Fold1   0.3395226
#> 2:  Fold2   0.3495002
#> 3:  Fold3   0.3455662

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.