# nolint start
library(mlexperiments)
library(mlsurvlrnrs)
The hardware and bandwidth for this mirror is donated by dogado GmbH, the Webhosting and Full Service-Cloud Provider. Check out our Wordpress Tutorial.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]dogado.de.
# nolint start
library(mlexperiments)
library(mlsurvlrnrs)
See https://github.com/kapsner/mlsurvlrnrs/blob/main/R/learner_surv_glmnet_cox.R for implementation details.
<- survival::colon |>
dataset ::as.data.table() |>
data.tablena.omit()
<- dataset[get("etype") == 2, ]
dataset
<- c("status", "time", "rx")
surv_cols <- colnames(dataset)[3:(ncol(dataset) - 1)]
feature_cols <- c("sex", "obstruct", "perfor", "adhere", "differ", "extent",
cat_vars "surg", "node4", "rx")
<- 123
seed if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) {
# on cran
<- 2L
ncores else {
} <- ifelse(
ncores test = parallel::detectCores() > 4,
yes = 4L,
no = ifelse(
test = parallel::detectCores() < 2L,
yes = 1L,
no = parallel::detectCores()
)
)
}options("mlexperiments.bayesian.max_init" = 10L)
<- splitTools::multi_strata(
split_vector df = dataset[, .SD, .SDcols = surv_cols],
strategy = "kmeans",
k = 4
)
<- splitTools::partition(
data_split y = split_vector,
p = c(train = 0.7, test = 0.3),
type = "stratified",
seed = seed
)
<- model.matrix(
train_x ~ -1 + .,
dataset[$train, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])
data_split
]
)<- survival::Surv(
train_y event = (dataset[data_split$train, get("status")] |>
as.character() |>
as.integer()),
time = dataset[data_split$train, get("time")],
type = "right"
)<- splitTools::multi_strata(
split_vector_train df = dataset[data_split$train, .SD, .SDcols = surv_cols],
strategy = "kmeans",
k = 4
)
<- model.matrix(
test_x ~ -1 + .,
$test, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])]
dataset[data_split
)<- survival::Surv(
test_y event = (dataset[data_split$test, get("status")] |>
as.character() |>
as.integer()),
time = dataset[data_split$test, get("time")],
type = "right"
)
<- splitTools::create_folds(
fold_list y = split_vector_train,
k = 3,
type = "stratified",
seed = seed
)
# required learner arguments, not optimized
<- NULL
learner_args
# set arguments for predict function and performance metric,
# required for mlexperiments::MLCrossValidation and
# mlexperiments::MLNestedCV
<- NULL
predict_args <- c_index
performance_metric <- NULL
performance_metric_args <- FALSE
return_models
# required for grid search and initialization of bayesian optimization
<- expand.grid(
parameter_grid alpha = seq(0, 1, 0.05)
)# reduce to a maximum of 10 rows
if (nrow(parameter_grid) > 10) {
set.seed(123)
<- sample(seq_len(nrow(parameter_grid)), 10, FALSE)
sample_rows <- kdry::mlh_subset(parameter_grid, sample_rows)
parameter_grid
}
# required for bayesian optimization
<- list(
parameter_bounds alpha = c(0., 1.)
)<- list(
optim_args iters.n = ncores,
kappa = 3.5,
acq = "ucb"
)
<- mlexperiments::MLTuneParameters$new(
tuner learner = LearnerSurvGlmnetCox$new(),
strategy = "grid",
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
tuner$learner_args <- learner_args
tuner$split_type <- "stratified"
tuner$split_vector <- split_vector_train
tuner
$set_data(
tunerx = train_x,
y = train_y
)
<- tuner$execute(k = 3)
tuner_results_grid #>
#> Parameter settings [===========================>---------------------------------------------------------------------------------------------------------------] 2/10 ( 20%)
#> Parameter settings [=========================================>-------------------------------------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=======================================================>-----------------------------------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [=====================================================================>---------------------------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [==================================================================================>--------------------------------------------------------] 6/10 ( 60%)
#> Parameter settings [================================================================================================>------------------------------------------] 7/10 ( 70%)
#> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%)
#> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%)
#> Parameter settings [==========================================================================================================================================] 10/10 (100%)
head(tuner_results_grid)
#> setting_id metric_optim_mean lambda alpha
#> 1: 1 0.6420939 0.1571721 0.70
#> 2: 2 0.6473427 0.1222450 0.90
#> 3: 3 0.6420939 0.1692623 0.65
#> 4: 4 0.6503151 0.9134093 0.10
#> 5: 5 0.6448394 0.2227701 0.45
#> 6: 6 0.6516264 2.0049311 0.05
<- mlexperiments::MLTuneParameters$new(
tuner learner = LearnerSurvGlmnetCox$new(),
strategy = "bayesian",
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
tuner$parameter_bounds <- parameter_bounds
tuner
$learner_args <- learner_args
tuner$optim_args <- optim_args
tuner
$split_type <- "stratified"
tuner$split_vector <- split_vector_train
tuner
$set_data(
tunerx = train_x,
y = train_y
)
<- tuner$execute(k = 3)
tuner_results_bayesian #>
#> Registering parallel backend using 4 cores.
head(tuner_results_bayesian)
#> Epoch setting_id alpha gpUtility acqOptimum inBounds Elapsed Score metric_optim_mean lambda errorMessage
#> 1: 0 1 0.70 NA FALSE TRUE 1.186 0.6420939 0.6420939 0.1571721 NA
#> 2: 0 2 0.90 NA FALSE TRUE 1.157 0.6473427 0.6473427 0.1222450 NA
#> 3: 0 3 0.65 NA FALSE TRUE 1.163 0.6420939 0.6420939 0.1692623 NA
#> 4: 0 4 0.10 NA FALSE TRUE 1.177 0.6503151 0.6503151 0.9134093 NA
#> 5: 0 5 0.45 NA FALSE TRUE 0.240 0.6448394 0.6448394 0.2227701 NA
#> 6: 0 6 0.05 NA FALSE TRUE 0.286 0.6516264 0.6516264 2.0049311 NA
<- mlexperiments::MLCrossValidation$new(
validator learner = LearnerSurvGlmnetCox$new(),
fold_list = fold_list,
ncores = ncores,
seed = seed
)
$learner_args <- tuner$results$best.setting[-1]
validator
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> CV fold: Fold2
#>
#> CV fold: Fold3
head(validator_results)
#> fold performance alpha lambda
#> 1: Fold1 0.5959883 0.03836977 2.612644
#> 2: Fold2 0.6688831 0.03836977 2.612644
#> 3: Fold3 0.6899724 0.03836977 2.612644
<- mlexperiments::MLNestedCV$new(
validator learner = LearnerSurvGlmnetCox$new(),
strategy = "grid",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = seed
)
$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator$split_vector <- split_vector_train
validator
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- return_models
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> Parameter settings [===========================>---------------------------------------------------------------------------------------------------------------] 2/10 ( 20%)
#> Parameter settings [=========================================>-------------------------------------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=======================================================>-----------------------------------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [=====================================================================>---------------------------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [==================================================================================>--------------------------------------------------------] 6/10 ( 60%)
#> Parameter settings [================================================================================================>------------------------------------------] 7/10 ( 70%)
#> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%)
#> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%)
#> Parameter settings [==========================================================================================================================================] 10/10 (100%)
#> CV fold: Fold2
#> CV progress [=================================================================================================>-------------------------------------------------] 2/3 ( 67%)
#>
#> Parameter settings [===========================>---------------------------------------------------------------------------------------------------------------] 2/10 ( 20%)
#> Parameter settings [=========================================>-------------------------------------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=======================================================>-----------------------------------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [=====================================================================>---------------------------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [==================================================================================>--------------------------------------------------------] 6/10 ( 60%)
#> Parameter settings [================================================================================================>------------------------------------------] 7/10 ( 70%)
#> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%)
#> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%)
#> Parameter settings [==========================================================================================================================================] 10/10 (100%)
#> CV fold: Fold3
#> CV progress [===================================================================================================================================================] 3/3 (100%)
#>
#> Parameter settings [===========================>---------------------------------------------------------------------------------------------------------------] 2/10 ( 20%)
#> Parameter settings [=========================================>-------------------------------------------------------------------------------------------------] 3/10 ( 30%)
#> Parameter settings [=======================================================>-----------------------------------------------------------------------------------] 4/10 ( 40%)
#> Parameter settings [=====================================================================>---------------------------------------------------------------------] 5/10 ( 50%)
#> Parameter settings [==================================================================================>--------------------------------------------------------] 6/10 ( 60%)
#> Parameter settings [================================================================================================>------------------------------------------] 7/10 ( 70%)
#> Parameter settings [==============================================================================================================>----------------------------] 8/10 ( 80%)
#> Parameter settings [============================================================================================================================>--------------] 9/10 ( 90%)
#> Parameter settings [==========================================================================================================================================] 10/10 (100%)
head(validator_results)
#> fold performance lambda alpha
#> 1: Fold1 0.5881450 1.2565031 0.05
#> 2: Fold2 0.6187568 0.4969800 0.10
#> 3: Fold3 0.6882968 0.1076019 0.05
<- mlexperiments::MLNestedCV$new(
validator learner = LearnerSurvGlmnetCox$new(),
strategy = "bayesian",
fold_list = fold_list,
k_tuning = 3L,
ncores = ncores,
seed = 312
)
$parameter_grid <- parameter_grid
validator$learner_args <- learner_args
validator$split_type <- "stratified"
validator$split_vector <- split_vector_train
validator
$parameter_bounds <- parameter_bounds
validator$optim_args <- optim_args
validator
$predict_args <- predict_args
validator$performance_metric <- performance_metric
validator$performance_metric_args <- performance_metric_args
validator$return_models <- TRUE
validator
$set_data(
validatorx = train_x,
y = train_y
)
<- validator$execute()
validator_results #>
#> CV fold: Fold1
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold2
#> CV progress [=================================================================================================>-------------------------------------------------] 2/3 ( 67%)
#>
#> Registering parallel backend using 4 cores.
#>
#> CV fold: Fold3
#> CV progress [===================================================================================================================================================] 3/3 (100%)
#>
#> Registering parallel backend using 4 cores.
head(validator_results)
#> fold performance alpha lambda
#> 1: Fold1 0.5921167 0.001528976 28.32153046
#> 2: Fold2 0.6033518 0.450000000 0.05758351
#> 3: Fold3 0.6908924 0.150000000 0.40290596
See https://github.com/kapsner/mlsurvlrnrs/blob/main/R/learner_surv_coxph_cox.R for implementation details.
<- data.matrix(
train_x_coxph
dataset[$train, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])
data_split
]
)<- data.matrix(
test_x_coxph
dataset[$test, .SD, .SDcols = setdiff(feature_cols, surv_cols[1:2])
data_split
] )
<- mlexperiments::MLCrossValidation$new(
validator_coxph learner = LearnerSurvCoxPHCox$new(),
fold_list = fold_list,
ncores = ncores,
seed = seed
)$performance_metric <- performance_metric
validator_coxph$performance_metric_args <- performance_metric_args
validator_coxph$return_models <- TRUE
validator_coxph$set_data(
validator_coxphx = train_x_coxph,
y = train_y,
cat_vars = cat_vars
)<- validator_coxph$execute()
validator_coxph_results #>
#> CV fold: Fold1
#> Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'.
#>
#> CV fold: Fold2
#> Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'.
#>
#> CV fold: Fold3
#> Parameter 'ncores' is ignored for learner 'LearnerSurvCoxPHCox'.
head(validator_coxph_results)
#> fold performance
#> 1: Fold1 0.5895801
#> 2: Fold2 0.5992298
#> 3: Fold3 0.6732488
::validate_fold_equality(
mlexperimentsexperiments = list(validator, validator_coxph)
)
<- mlexperiments::predictions(
preds_glmnet object = validator,
newdata = test_x
)<- mlexperiments::predictions(
preds_coxph object = validator_coxph,
newdata = test_x_coxph
)
<- mlexperiments::performance(
perf_glmnet object = validator,
prediction_results = preds_glmnet,
y_ground_truth = test_y
)
perf_glmnet#> model performance
#> 1: Fold1 0.6660022
#> 2: Fold2 0.6846061
#> 3: Fold3 0.6636560
<- mlexperiments::performance(
perf_coxph object = validator_coxph,
prediction_results = preds_coxph,
y_ground_truth = test_y
)
perf_coxph#> model performance
#> 1: Fold1 0.6758025
#> 2: Fold2 0.6782526
#> 3: Fold3 0.6437025
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.
Health stats visible at Monitor.